Phase 2 Subsidence Investigations

Prepared for

LONE STAR GROUNDWATER CONSERVATION DISTRICT

Prepared by

LSGCD TECHNICAL CONSULTING TEAM

May 6, 2022

GEOSCIENTIST SEALS

This report documents the work of the following licensed professional geoscientists.

Michael R. Keester, P.G.

Mr. Keester was primarily responsible for preparing report sections on the Brackish Jasper Aquifer Conceptual Model Review and Phase 3 Drilling and Testing Plan along with the related summary and conclusions. Mr. Keester was also responsible for finalizing the project summary report.

Principal | Hydrogeologist – R. W. Harden & Associates, Inc. (TX Geoscientist Firm License #50033)

Christopher Drabek, P.G.

Mr. Drabek was primarily responsible for preparing the report section on the Gulf Coast Aquifer System Geologic Structure along with the related summary and conclusions. He also provided review and QA/QC of the final report.

hustopher

Senior Hydrogeologist – Advanced Groundwater Solutions, LLC (TX Geoscientist Firm License #50639)

Michael Thornhill, P.G.

Mr. Thornhill was primarily responsible for preparing the report sections on Other Considerations related to compaction of subsurface clays and the Summary of Clay Layer Thickness Based on Geophysical Log Analysis. He also provided review and QA/QC of the final report.

Nhennel R. Lambill

GEOLOGY

Principal - Thornhill Group, Inc. (TX Geoscientist Firm License #50346)

James Beach, P.G.

Mr. Beach was primarily responsible for providing review and QA/QC of the final report.

TABLE OF CONTENTS

INTRODUCTION	1
BRACKISH JASPER AQUIFER CONCEPTUAL MODEL REVIEW	2
Review of Compaction Parameterization	4
Specific Storage	5
Vertical Hydraulic Conductivity	10
Preconsolidation Stress	13
Other Considerations	17
GULF COAST AQUIFER SYSTEM GEOLOGIC STRUCTURE	20
Hydrostratigraphy	20
Geophysical Log Evaluation	25
Geophysical Log Limitations	26
Geophysical Log Data	26
Typical Geophysical Logs	27
Chicot Aquifer	29
Evangeline Aquifer	29
Burkeville Confining Unit	34
Jasper Aquifer	37
Upper Jasper Aquifer	37
Lower Jasper Aquifer	37
Combined Jasper Aquifer	38
GULF-2023 Groundwater Flow Model	44
GULF-2023 Hydrogeologic Surface Comparison	45
GULF-2023 Observation Well Designations	46
Summary of Clay Layer Thickness Based on Geophysical Log Analysis	48
PHASE 3 DRILLING AND TESTING PLAN	52
Proposed Test Drilling Locations	52
Proposed Data Collection	54
SUMMARY AND CONCLUSIONS	58
Brackish Jasper Aquifer Conceptual Model	58
Hydrostratigraphy	60
Phase 3 Drilling and Testing	62
REFERENCES	63

FIGURES

Figure 1.	Study area identified by Kelley and others (2018) along with the sites discussed by Gabrysch and Bonnet (1974, 1976a; 1976b) and Gabrysch (1982). Modified from Kelley and others (2018).
Figure 2.	Overburden (geostatic) stress gradient in the Gulf Coast region. Reproduced from Tiab and Donaldson (2016)
Figure 3.	Calculated and modeled porosity with depth based on data reported by Gabrysch and Bonnet (1974; 1976a; 1976b)
Figure 4.	Calculated and modeled clay compressibility with depth based on data reported by Gabrysch and Bonnet (1974; 1976a; 1976b)
Figure 5.	Calculated and modeled clay inelastic specific storage with depth based on data reported by Gabrysch and Bonnet (1974; 1976a; 1976b)
Figure 6.	Calculated and modeled clay elastic specific storage with depth based on data reported by Gabrysch and Bonnet (1974; 1976a; 1976b)
Figure 7.	Illustration of compaction as a function of the compaction time constant. Reproduced from Hoffman and others (2003)
Figure 8.	Comparison of the depth dependent vertical hydraulic conductivity models developed by Kelley and others (2018) for the brackish Jasper Aquifer
Figure 9.	Wells associated with the Lake Houston extensometer site and nearby GPS monitoring sites 15
Figure 10.	Hydrograph of reported water level measurements from the Lake Houston site Jasper Aquifer monitoring well (TWDB, 2021), reported cumulative compaction of the Lake Houston extensometer (Ramage and Shah, 2019), and GPS modeled vertical displacement of the subsurface units below the Evangeline Aquifer (https://hgsubsidence.org/GPS/)16
Figure 11. I	Montgomery County surface geology and approximate aquifer outcrop areas (Bureau of Economic Geology, 2014; LBG-Guyton Associates, 2016)
Figure 12.	Subsurface faults and large oil and gas fields in the vicinity of Montgomery County (base map from the Tectonic Map of Texas, Ewing, 1991)24
Figure 13.	Locations of oil and gas wells or test holes (based on available data from the RRC, 2021)25
Figure 14.	Locations of geophysical logs evaluated for this study
Figure 15.	Locations of typical geophysical logs
Figure 16.	Estimated base of the Chicot Aquifer within Montgomery County
Figure 17.	Estimated thickness of the Chicot Aquifer within Montgomery County
Figure 18.	Estimated base of the Evangeline Aquifer within Montgomery County
Figure 19.	Estimated thickness of the Evangeline Aquifer within Montgomery County
Figure 20.	Estimated base of the Burkeville Confining Unit within Montgomery County
Figure 21.	Estimated thickness of the Burkeville Confining Unit within Montgomery County
Figure 22.	Estimated base of the Upper Jasper Aquifer within Montgomery County
Figure 23.	Estimated thickness of the Upper Jasper Aquifer within Montgomery County40
Figure 24.	Estimated base of the Lower Jasper Aquifer within Montgomery County based on the United States Geological Survey Source Water Assessment Program dataset (Strom and others, 2003)

Figure 25.	Estimated thickness of the Lower Jasper Aquifer within Montgomery County as the difference between the base of the Upper Jasper as defined as part of this study and the base of the Jasper Aquifer as defined by the United States Geological Survey Source Water Assessment Program dataset
Figure 26.	Estimated total thickness of the Jasper Aquifer within Montgomery County as the difference between the base of the Burkeville Confining Unit as defined in this study and the base of the Jasper Aquifer as defined by the United States Geological Survey Source Water Assessment Program dataset
Figure 27.	United States Geological Survey observation wells assigned a new aquifer designation based on the GULF-2023 groundwater flow model (based on provisional data provided by the United States Geological Survey in May 2021)
Figure 28.	Illustration of the relationship between the aquifer sands and clay interbeds (reproduced from Kelley and others, 2018)
Figure 29.	Histogram illustrating the percentage of clay bed thicknesses by hydrogeologic unit in Montgomery County
Figure 30.	Violin plot illustrating the distribution of clay bed thickness by hydrogeologic unit in Montgomery County
Figure 31.	Proposed drilling and testing locations
Figure 32.	Cross plot illustrating clay type determination from spectral gamma ray tool measurements (Arbab and others, 2017)
Figure 33.	Illustration of measurements and results from a magnetic resonance log (Vista Clara, Inc., 2022)
Figure 34.	Illustration of clay mineral identification using x-ray diffraction (Arbab and others, 2017)57

TABLES

Table 1.	Comparison of estimated specific storage of clay beds	10
Table 2.	Representative values for horizontal and vertical hydraulic conductivity of clay (Walton, 1987).	12
Table 3.	Hydrogeologic and geologic units of the Gulf Coast Aquifer System within and near Montgomery County (Popkin, 1971; Young and Draper, 2020)	22

APPENDICIES

- Appendix 1 Geophysical Log Data
- Appendix 2 Typical Geophysical Logs
- Appendix 3 Clay Layers Summary
- Appendix 4 Percent Clay Maps
- Appendix 5 Proposed Test Drilling Locations

INTRODUCTION

Chapter 36 of the Texas Water Code requires Lone Star Groundwater Conservation District (LSGCD) to consider several factors when developing long-term goals and finding the balance between providing fair and impartial access to groundwater production and conservation of groundwater resources. One of LSGCD's considerations is the ability to control subsidence within Montgomery County. In order to thoughtfully consider the ability to control subsidence, the District is developing a robust understanding of the local conditions effect on compaction of the subsurface formations which can cause land surface subsidence.

During Phase 1 of the subsidence investigations, Thornhill and Keester (2020) focused on developing an understanding of existing research. During the initial phase, the focus was not so much on the validity or applicability to Montgomery County; rather, it was on compiling existing studies and determining questions that may need further investigation. In Phase 2 of the District's subsidence investigations, the LSGCD technical consulting team has worked collaboratively to investigate two of the most applicable questions.

One of these questions involved a review of a subsidence study titled: *Subsidence Risk Assessment and Regulatory Considerations for the Brackish Jasper Aquifer* (Kelley and others, 2018). Thornhill and Keester (2020) discussed and summarized this study as part of the Phase I study. However, because information from this study has direct relevance to LSGCD's current and future management of groundwater resources, we conducted a more detailed evaluation of the information provided in the report.

The other question related to the hydrostratigraphy and clay layers within the subsurface units in Montgomery County. To address the question, we conducted an in-depth evaluation of the subsurface geology of Montgomery County. Our work aimed to improve the mapping of the elevation of the top and bottom of the subsurface hydrogeologic formations and to improve the understanding of the thicknesses of sand and clay intervals within the formations in the study area. Our approach for completing the work followed the long-standing approach taken by groundwater professionals of combining an extensive understanding of practical local hydrogeology with geophysical log analysis.

BRACKISH JASPER AQUIFER CONCEPTUAL MODEL REVIEW

Kelley and others' (2018) work focuses on the Jasper Aquifer. As shown on Figure 1, Kelley and others (2018) included all of Brazoria, Fort Bend, Galveston, and Harris counties with portions of the neighboring counties included in the study area. Within Montgomery County, the study area extends to the southern end of Lake Conroe.

Kelley and others (2018) identified their work as an estimate of "the relative risk of subsidence associated with development of brackish groundwater in the Jasper Aquifer of the Gulf Coast Aquifer System within the [Harris-Galveston and Fort Bend Subsidence] Districts." The two objectives of their risk assessment were to:

- 1. "Assess potential risk of subsidence that may result from development of brackish groundwater resources in the Jasper Aquifer within the [Harris-Galveston and Fort Bend Subsidence] Districts; and
- 2. Provide the [Harris-Galveston and Fort Bend Subsidence] Districts with guidance regarding the types of activities and data that would benefit the consideration as special provisions to Jasper Aquifer brackish production permits."

To meet the first objective, Kelley and others (2018) developed a numerical model using the MODFLOW code (version not identified). To simulate compaction of the subsurface units, they used the MODFLOW subsidence package developed by Hoffman and others (2003). The development of the numerical model of groundwater flow and use of the MODFLOW subsidence package is common practice for assessing the potential for compaction and is reasonable approach for addressing the first objective. The numerical model is simply a mathematical representation of the conceptual model of the aquifer. The information developed for the conceptual model dictates the development of the numerical model. Therefore, our work focused primarily on the conceptual model described by Kelley and others (2018).

Figure 1. Study area identified by Kelley and others (2018) along with the sites discussed by Gabrysch and Bonnet (1974, 1976a; 1976b) and Gabrysch (1982). Modified from Kelley and others (2018).

Review of Compaction Parameterization

Kelley and others (2018) begin their discussion of the conceptual model with a brief introduction to consolidation theory. Their discussion highlights the mathematics behind the numerical model package used to predict compaction and subsidence. Of particular importance to the equations are the following clay bed properties:

- Geostatic stress (σ), hydrostatic stress (u), and effective stress (σ')
- Thickness
- Specific storage
- Vertical hydraulic conductivity
- Preconsolidation stress

Kelley and others (2018) point out that "none of the physical measurements presented [in their report]... have been collected at depths representative of the brackish Jasper Aquifer in the [Harris-Galveston and Fort Bend Subsidence] Districts.... Properties controlling compaction of the brackish Jasper Aquifer should be considered uncertain." To our knowledge the statement would also have been accurate if it more generally referred to the Jasper Aquifer in the Gulf Coast region.

Much of the analyses discussed by Kelley and others (2018) used data obtained and discussed by Gabrysch and Bonnet (1974; 1976a; 1976b). The locations where these data were collected are shown on Figure 1. As shown on Figure 1, the nearest location is more than 20 miles from Montgomery County. Also, the depth from which the data were collected represents the shallower and younger sediments that make up the Chicot and Evangeline aquifers. As such, we agree with Kelley and others (2018) that the application of results from analyses of these data to the Jasper Aquifer is uncertain.

With regard to the first compaction property listed above, geostatic stress is essentially a combination of the weight of the sediments and fluids above a specified depth in the subsurface. The hydrostatic stress is the pressure within the pore space of the sediments above a specified depth in the subsurface. Effective stress is the difference between the geostatic stress and the hydrostatic stress. Terzaghi (1925) identified this relation which allows effective stress within an aquifer to be expressed as (Leake and Galloway, 2007):

$$\sigma' = \sigma - u \tag{1}$$

Commonly, the geostatic stress is considered to be 1.0 pounds per square inch (psi) per foot (ft) of burial (psi/ft). For fresh water, the hydrostatic stress is 0.433 psi/ft which results in an effective stress gradient of 0.467 psi/ft assuming the geostatic stress gradient of 1.0 psi/ft and a water level equal to the depth of burial. These are the stress values used by Kelley and others (2018). However, Tiab and Donaldson (2016) indicate the geostatic gradient in the Gulf Coast region increases with depth being about 0.85 psi/ft near the surface and increasing to 1.0 psi/ft at about 20,000 feet in depth (see Figure 2). They indicate the reason for the curvature of the trend shown on Figure 2 is due to "sediments being younger and more compressible near the surface but being less compressible and more plastic with depth." For depths up to about 2,000 feet, the geostatic stress gradient presented by Tiab and Donaldson (2016) results in an effective stress gradient of about 0.407 to 0.437 psi/ft.

Figure 2. Overburden (geostatic) stress gradient in the Gulf Coast region. Reproduced from Tiab and Donaldson (2016)

The thickness of the clay units also affects compaction of the sediments, particularly the rate of compaction. The local stratigraphy and thickness of clay units is discussed below.

Specific Storage

The specific storage (S_s) of aquifer sediments is the volume of water released from or added to storage in a unit volume of aquifer per unit decline or rise in water level (Bear, 1979). The specific storage value may be further defined as the sum of the elastic (S_{ske}) and inelastic (S_{skv}) components (Hoffman and others, 2003) with the inelastic component being approximately 100 times greater than the elastic component (Leake and Prudic, 1991; Young and others, 2006). Due to the difference between the elastic and inelastic components, we can generally assume (as did Kelley and others (2018)) the inelastic specific storage is essentially equal to the total specific storage. Calculation of the specific storage compents is then as follows:

$$S_{skv} \approx S_s = \rho g(\alpha + n\beta)$$
 (2)

$$S_{ske} = \frac{S_{sk\nu}}{100} \tag{3}$$

where:

$$\begin{split} S_{skv} &= inelastic \, specific \, storage \, (m^{-1}) - \text{multiply by } 0.3048 \text{ to get per foot (ft}^{-1}) \\ S_{ske} &= elastic \, specific \, storage \, (m^{-1}) - \text{multiply by } 0.3048 \text{ to get per foot (ft}^{-1}) \\ \rho &= density \, of \, water \, \left(\frac{kg}{m^3}\right) \cong 1,000 \, \frac{kg}{m^3} \, for \, fresh \, water \\ g &= gravity \, \left(\frac{m}{s^2}\right) = 9.80665 \, \frac{m}{s^2} \\ a &= sediment \, compressibility \, \left(\frac{m^2}{N}\right) \\ n &= porosity \\ \beta &= water \, compressibility \, \left(\frac{m^2}{N}\right) \\ Units: \, ft &= foot; \, m = meter; \, kg = kilogram; s = second; \, N = Newton = \frac{kg \cdot m}{s^2} \end{split}$$

Kelley and others (2018) state that Gabrysch and Bonnet (1974; 1976a; 1976b) report laboratory measurements of porosity and compressibility for the Baytown, Seabrook, and Moses Lake sites shown on Figure 1. However, these measurements are not actually reported by Gabrysch and Bonnet (1974; 1976a; 1976b); rather, Gabrysch and Bonnet (1974; 1976a; 1976b) report measurements of void ratio at various levels of pressure for clay samples collected at various depths within the Chicot and Evangeline aquifers. While not stated, we assume Kelley and others (2018) calculated porosity and compressibility from reported data using the following equations:

$$n = \frac{e}{1+e} \tag{4}$$

$$\alpha = \frac{\Delta n}{\Delta \sigma_{\nu}'} \tag{5}$$

where:

$$e = void ratio$$

 $\sigma'_v = applied \ stress$

The Δ in equation 5 represents a change in the value. That is, compressibility is calculated as the change in porosity divided by the change in applied stress to the sample. We performed the same calculations we assume were performed by Kelley and others (2018) to determine porosity and compressibility from the data reported by Gabrysch and Bonnet (1974; 1976a; 1976b). Our results appeared to agree reasonably well with the results presented by Kelley and others (2018).

One of the requirements Kelley and others (2018) applied to their analysis was to only use measurements of the void ratio where the applied stress was greater than the effective depth of burial. Kelley and others (2018) state that they calculated the effective burial depth "by dividing the pressure applied to the core sample by a geostatic gradient of 0.467 pounds per square inch (psi) per foot of burial depth." As noted above, the value of 0.467 psi/ft represent the effective stress gradient assuming a geostatic stress gradient of 1.0 psi/ft. We inquired about the reported value and received an email

response from Dr. Steve Young on July 28, 2021 that the sentence should read "net effective stress gradient" rather than "geostatic gradient." As of December 11, 2021 a corrected report had not been posted to the Harris-Galveston Subsidence District website.

For our evaluation of the data, we used the lower and variable geostatic stress gradient identified by Tiab and Donaldson (2016). To calculate the effective burial depth, we followed the same assumptions as Kelley and others (2018) except that the geostatic stress is lower. The following equation illustrates the calculation:

$$Effective burial depth = \frac{\sigma'_v}{\sigma^{-\nu}}$$
(6)

Using the lower geostatic gradient allows for additional data points to be included in the calculation of porosity and compressibility. Figure 3 and Figure 4 show porosity and compressibility plotted versus effective burial depth. The calculated values reflect the values determined from the Gabrysch and Bonnet (1974; 1976a; 1976b) data. The modeled value reflects the best fit trend line through the data. We selected a logarithmic trend through the data as it provided the best fit through data representing effective burial depths of less than 5,000 feet. Beyond 5,000 feet of depth, the logarithmic trend is not applicable. The equation shown on the chart represents the modeled values.

Figure 3. Calculated and modeled porosity with depth based on data reported by Gabrysch and Bonnet (1974; 1976a; 1976b)

Figure 4. Calculated and modeled clay compressibility with depth based on data reported by Gabrysch and Bonnet (1974; 1976a; 1976b).

Per Equation 2, we also need the compressibility of water to calculate specific storage. Kelley and others (2018) used a constant value of $4.4E-10 \text{ m}^2/\text{N}$ for the compressibility of water. However, the compressibility of water is not a constant value, and it varies with the temperature of the water. We can estimate the temperature of water at depth based on the average annual air temperature of 20°C (Long, 2020) and a geothermal gradient of about 9°C per 1,000 feet of depth (Young and others, 2016). We can then use Kell's (1975) equation for the isothermal compressibility of water:

$$\beta = \frac{5.088496 \times 10^{-10} + 6.163813 \times 10^{-12} t + 1.459187 \times 10^{-14} t^2}{1 + 0.01967348t}$$
(7)

where

$$\beta = isothermal compressibility (Pa^{-1} \equiv \frac{m^2}{N})$$

t = temperature (°C)

Using each of the calculated parameters, we then applied Equation 2 and Equation 3 to calculate the inelastic and elastic specific storage, respectively, for the clay samples.

Figure 5 and Figure 6 illustrate the calculated and modeled clay inelastic and elastic specific storage, respectively. Like the porosity and compressibility values, the specific storage values decrease with depth.

All other factors being equal, lower values of clay specific storage result in less predicted compaction. Overall, our modeled values of clay specific storage based on the Gabrysch and Bonnet (1974; 1976a; 1976b) data are similar in magnitude to the modeled values of Kelley and others (2018). Table 1 provides a comparison of our calculated values and those of Kelley and others (2018).

Figure 5. Calculated and modeled clay inelastic specific storage with depth based on data reported by Gabrysch and Bonnet (1974; 1976a; 1976b).

Figure 6. Calculated and modeled clay elastic specific storage with depth based on data reported by Gabrysch and Bonnet (1974; 1976a; 1976b)

Burial	Clay Inelastic Specific Storage (ft ⁻¹)			Clay Elastic Specific Storage (ft ⁻¹)		
Depth (ft)	HGSD	LSGCD	Difference	HGSD	LSGCD	Difference
100	3.5E-04	1.6E-04	1.9E-04	4.2E-06	2.2E-06	2.0E-06
250	1.9E-04	1.3E-04	5.9E-05	2.4E-06	1.8E-06	5.7E-07
500	1.1E-04	1.0E-04	1.3E-05	1.6E-06	1.5E-06	8.6E-08
750	8.6E-05	8.7E-05	-7.5E-07	1.3E-06	1.3E-06	-5.4E-08
1,000	7.0E-05	7.6E-05	-6.1E-06	1.1E-06	1.2E-06	-1.1E-07
1,500	5.3E-05	6.2E-05	-8.8E-06	8.7E-07	1.0E-06	-1.3E-07
2,000	4.3E-05	5.1E-05	-8.1E-06	7.5E-07	8.8E-07	-1.2E-07
2,500	3.7E-05	4.3E-05	-6.3E-06	6.7E-07	7.8E-07	-1.0E-07
3,000	3.3E-05	3.7E-05	-4.1E-06	6.2E-07	6.9E-07	-7.7E-08

Table 1. Comparison of estimated specific storage of clay beds.

HGSD = Kelley and others (2018)

LSGCD = This report

The biggest differences are at shallower depths of 500 feet or less. These differences at shallower depths are due to the type of mathematical trend. Using the functions with Microsoft Excel, we applied a logarithmic trend which appears to follow a curved trend in the data whereas Kelley and others (2018) applied a power trend which results in a straight-line on the plots. Also, while both the power and logarithmic trends result in unrealistic porosity values at shallow depths, the logarithmic trend more closely reflects the expected maximum of about 60 percent (Fetter, 1994). For example, the trend line of Kelley and others (2018) results in a clay porosity of 85 percent at a depth of 10 feet while the logarithmic trend we applied results in a clay porosity of 61 percent for the same depth.

Importantly, the values calculated are for samples collected the Chicot and Evangeline aquifers. While our calculated results for specific storage are similar to those of Kelley and others (2018), like those of Kelley and others (2018) they do not represent samples collected from the Jasper Aquifer. While we are able to determine a trendline through the calculated values on

Figure 5 and Figure 6, there is more than an order of magnitude difference in the values for similar depths. This variability should be considered when applying the modeled values to compaction in the Chicot and Evangeline. With the Jasper being an older formation, it is possible the lower bounds of the variability should be considered as a starting point or possibly favored during evaluations using these results.

Vertical Hydraulic Conductivity

The specific storage values of the clay beds control the amount of compaction that can occur under a given amount of stress. However, to determine the rate at which compaction occurs we also need to know the vertical hydraulic conductivity and thickness of the clay beds (discussed below) along with the specific storage.

The thickness and vertical hydraulic conductivity of individual clay beds affects the rate at which compaction may occur. When pumping from the aquifer occurs, water will preferentially move through the coarser-grained sediments (that is, sand) causing a pressure (that is, water level) decline in those layers of coarser-grained sediments. The decrease in pressure within the coarser-grained sediment layers creates a pressure gradient between the coarser-grained sediment layers and the finer-

grained (that is, clay) sediment layers. This pressure gradient causes water to move from the finergrained sediment layers into the coarser-grained sediment layers resulting in a decrease in pressure (and increase in effective stress) within the finer-grained sediment layers.

The decrease in pressure in a finer-grained sediment layer occurs immediately at the interface between that layer and the coarser-grained sediment layer. The decrease in pressure in the finer-grained sediment layer then propagates toward the center of the layer. Assuming consistent hydraulic properties of the layer, as the thickness of the finer-grained sediment layer increases, the time it takes for the pressure decrease to propagate to the center of the layer also increases. The amount of time it takes for full compaction to occur can be expressed as a "time constant" in the compaction calculations (Hoffman and others, 2003). The time constant (τ_0) in Equation 8 represents the amount of time at which about 93 percent of the ultimate clay bed compaction will occur. As illustrated in Figure 7, approximately 50 percent of the compaction occurs relatively rapidly (within about 20 percent of the time constant) and then gradually slows over time.

$$\tau_0 = \frac{\left(\frac{b_0}{2}\right)^2 S_s}{K_v} \tag{8}$$

where:

 $b_0 = initial thickness of the clay bed$ $S_s = specific storage of the clay bed$

 $K_v = vertical hydraulic conductivity of the clay bed$

Figure 7. Illustration of compaction as a function of the compaction time constant. Reproduced from Hoffman and others (2003).

Kelley and others (2018) report using vertical hydraulic conductivity values as measured by Gabrysch and Bonnet (1974). However, Gabrysch and Bonnet (1974) only report measured hydraulic conductivity values and do not specify whether those values are horizontal or vertical. Analysis of the data reported by Gabrysch and Bonnet (1974), for samples where the effective stress was greater than the sample depth, provides a range of hydraulic conductivity values from 5.95E-07 to 6.5E-05 feet

per day (ft/d). Table 2 provides representative values of the horizontal and vertical hydraulic conductivity of clay.

Table 2.Representative values for horizontal and vertical hydraulic conductivity of clay
(Walton, 1987).

Horizontal Hydraulic Conductivity (ft/d)	2.66E-05 - 2.66E-04
Vertical Hydraulic Conductivity (ft/d)	6.52E-09 – 1.33E-07

Comparing the clay hydraulic conductivity results from Gabrysch and Bonnet (1974) to the representative values, the data from Gabrysch and Bonnet (1974) are similar to the representative horizontal hydraulic conductivity values and greater than the representative vertical hydraulic conductivity. While it is possible that the samples from Gabrysch and Bonnet (1974) are outliers to the representative values, we should not assume the values are measurements of the vertical hydraulic conductivity when they were not reported as such.

Kelley and others (2018) developed a model of the vertical hydraulic conductivity with depth based on their analysis of the Gabrysch and Bonnet (1974). To provide a lower bound on their vertical hydraulic conductivity estimates, Kelley and others (2018) also developed a depth dependent model using parameters from PRESS models which are used to simulate one-dimensional compaction in the area. The PRESS vertical hydraulic conductivity values are calibrated model parameters for prediction of compaction within the Chicot and Evangeline aquifers. Figure 8 illustrates the two models developed by Kelley and others (2018) for estimating the vertical hydraulic conductivity of clays within the brackish Jasper Aquifer.

Kelley and others (2018) used the average of the PRESS input model and the core data model to define the vertical hydraulic conductivity of clays in the brackish Jasper Aquifer model. As shown on Figure 8, the use of this average of the two models results in consistently higher vertical hydraulic conductivity values for the clays in the brackish Jasper Aquifer than for clays in the shallower and younger formations. As depth increases the disparity between the models increases with modeled vertical hydraulic conductivity values at a depth of 2,000 feet being an order of magnitude greater for the Jasper than the PRESS models would assume for Chicot and Evangeline. The effect of this difference may be illustrated through a comparison of the representative value for vertical hydraulic conductivity (Table 2) and the model developed by Kelley and others (2018) using the Gabrysch and Bonnet (1974) data.

All other factors being equal, a lower vertical hydraulic conductivity results in a greater time constant. With vertical hydraulic conductivity as the denominator in Equation 8, each decrease in the order of magnitude in the value causes a corresponding increase in the order of magnitude in the time constant. For example, at a depth of 1,000 feet a 10-foot thick clay bed with a specific storage of 7.74E-05 ft⁻¹ (sum of LSGCD values in Table 1) the time constant would be 520 days based on Kelley and others (2018) analysis of the Gabrysch and Bonnet (1974) data (K_v = 3.72E-06 ft/d) but would be more than 14,500 days based on the maximum representative value (K_v = 1.33E-07 ft/d).

The approach by Kelley and others (2018) results in vertical hydraulic conductivity values for the clays of the Jasper Aquifer that are higher than those used in modeling of the younger stratigraphic units. Their approach would result in modeled compaction occurring at a much higher rate in the

Jasper than would occur in the Chicot and Evangeline, despite the Jasper being at greater depth than the overlying units. Assuming similar lithologic compositions, it is unlikely that the older and deeper clay units within the Jasper Aquifer would compact at a higher rate than younger and shallower sediments and the conceptualization of this parameter should not be applied within the regional model of the Gulf Coast Aquifer System.

Figure 8. Comparison of the depth dependent vertical hydraulic conductivity models developed by Kelley and others (2018) for the brackish Jasper Aquifer.

Preconsolidation Stress

Irreversible compaction of subsurface sediments begins when sediments are not fully consolidated and the effective stress is greater than the preconsolidation stress (that is, maximum effective stress). Commonly, the preconsolidation stress is synonymous with the preconsolidation head (that is, water level) of the aquifer (Leake and Prudic, 1991; Hoffman and others, 2003). While a single head value is not necessarily sufficient for calculating the effective stress (Leake and Galloway, 2007), for most analyses it provides a reasonable approximation.

Another way to describe the preconsolidation stress is relative to the amount of drawdown that needs to occur before permanent compaction begins. That is, how much do water levels need to decline before the effective stress is greater than the preconsolidation stress? For the Jasper Aquifer, Kelley and others (2018) conceptualized this "drawdown at preconsolidation stress" to be about 75 feet at ground level and decreasing linearly to zero (0) feet at 870 feet below ground level. That is, they conceptualized that compaction would occur immediately with pressure (that is, water level) decline in sediments at depths at or below 870 feet.

For the drawdown at preconsolidation stress, Kelley and others (2018) indicate the value near land surface (75 feet) is consistent with the Houston Area Groundwater Model (Kasmarek, 2013). In that model, Kasmarek (2013) set the preconsolidation head for the clay units as 70 feet below the starting

head (that is, water levels) for the model. These starting heads represented his best estimate of water levels in 1890. Within the model, "for changes in head in which head declines below preconsolidation head, an inelastic response is computed, permanent clay compaction is calculated, and the preconsolidation head is reset to the new head value" (Kasmarek, 2013). That is, per Kasmarek (2013) if the simulated water level declines below the 1890 estimated water level minus 70, then compaction occurs and the new water level becomes the preconsolidation head.

Kelley and others (2018) indicate their conceptualization of drawdown at preconsolidation stress is consistent with current PRESS models. As noted above, the PRESS values are calibrated model parameters for prediction of compaction within the Chicot and Evangeline aquifers and we should exercise caution in assuming the values are applicable to the deeper formations. As Kelley and others (2018) state: "the relationship describing drawdown at preconsolidation stress is very uncertain."

As discussed by Keester and others (2021), the conceptualization of drawdown at preconsolidation stress by Kelley and others (2018) may be inconsistent with observed water-level declines, extensometer measurements, and GPS-modeled vertical displacement at the Lake Houston extensometer site (shown on Figure 9). However, Kelley and others (2018) did not consider these data during their analyses.

The Lake Houston extensometer was completed in 1980 and the reported cumulative compaction within the Chicot and Evangeline aquifers at the end of 2019 was about 7.5 inches. For sediments below the Evangeline, the Lake Houston extensometer and GPS-modeled vertical displacement suggest no measurable compaction occurred. However, during the period of measured compaction in the Chicot and Evangeline aquifers, water levels in the Jasper Aquifer nearly 2,600 feet below ground level have declined by more than 150 feet. Figure 10 illustrates the cumulative compaction of the Chicot and Evangeline aquifers (that is, extensometer data), Jasper Aquifer water level change, and compaction of the formations below the Evangeline (GPS).

One possible reason why no measurable compaction occurred in the units below the Chicot and Evangeline aquifers is that the effective stress in the Jasper at the Lake Houston site has not increased to the point where compaction would occur; that is, the water level is still above the preconsolidation head. If the Jasper water level is above the preconsolidation head despite having declined more than 150 feet since 1980 and the depth of the measurement interval being nearly 2,600 feet below ground level, then the drawdown at preconsolidation stress for the Jasper Aquifer as conceptualized by Kelley and others (2018) must be reconsidered. As indicated above, Kelley and others (2018) conceptualized that any drawdown in the Jasper at depths greater than 870 feet would immediately result in inelastic compaction; however, reported data from the Lake Houston site appear to contradict this conceptualization.

Similarly, Gabrysch (1982) noted that deeper layers of the Evangeline at the Clear Lake site (see Figure 1) were not compacting due to water level declines. In his opinion, "Data from the Clear Lake site, where no appreciable compaction of the lower part of the Evangeline aquifer was occurring even though artesian-head declines were occurring, indicate that compaction of the deeper clay layers needs to be excluded in estimating largescale subsidence." Like the Lake Houston site, the lack of observed compaction in the deeper intervals may be due to the water levels not yet declining to preconsolidation head but the observations should be considered and addressed as part of the conceptual model.

Figure 9. Wells associated with the Lake Houston extensometer site and nearby GPS monitoring sites

Figure 10. Hydrograph of reported water level measurements from the Lake Houston site Jasper Aquifer monitoring well (TWDB, 2021b), reported cumulative compaction of the Lake Houston extensometer (Ramage and Shah, 2019), and GPS modeled vertical displacement of the subsurface units below the Evangeline Aquifer (https://hgsubsidence.org/GPS/)

Other Considerations

In the conceptual model section of their report, Kelley and others (2018) state that they will review the available data for estimating the properties governing compaction. They identify four properties that are important for their conceptual model of the Jasper Aquifer: specific storage, the thickness of clay beds, the vertical hydraulic conductivity of the clays, and the drawdown at preconsolidation stress. Other interrelated considerations which may influence the conceptualization of compaction and, certainly, the parameterization values and distributions of the factors Kelly and others (2018) identified, derived, or estimated in the Jasper Aquifer include:

Geometry of geologic units – structural geology maps, model layers, and hydrogeologic cross sections all show that the formations that comprise the Gulf Coast Aquifer System form a "wedge" shape that thickens toward the Gulf of Mexico. Young and others (2012) provide a schematic dip cross section that illustrates older (that is, deeper) beds dipping steeper than the overlying younger beds. Similarly, Popkin (1971) reports that within Montgomery County the Catahoula (which is below the Jasper) dips at 90 feet per mile, while the formations that comprise the Chicot dip at about 10 feet per mile, and intermediate beds dip from between 40 to 85 feet per mile. So far, this study has not discovered any literature that discusses whether variations in geologic dip can affect compaction.

Additionally, the sediments in each formation thicken toward the coastline and generally, depending on the distribution of depositional systems, the clay interbeds become more numerous and total clay thickness and percentages increase toward the Gulf of Mexico. As the geologic units thicken, the arrangement and distribution of sand and clay beds vary. Also, the dip, depth and thickness of sands and clays also determine the amount of artesian head reduction that can occur in a particular producing interval. Therefore, updip formations generally have less overall potential for compaction if all other factors are equal.

> Depositional environments and associated sediment characteristics and lithologies – Young and others (2012) provide a thorough discussion of depositional systems and related facies. For example, lithology of geologic units at land surface is a key factor in the resulting topography. Approximately the northwestern half of Montgomery County is characterized by topography with rolling hills and incised drainages, while the southeastern part of the county is generally flat and gently sloping toward the coast. Popkin (1971) reports that land surface elevations range from about 45 feet above mean sea level in southeastern parts of the county to about 440 feet above mean sea level in the northwestern corner. Popkin (1971) also notes that the younger geologic units at land surface form a plain while the older units cropping out farther inland and at higher elevations form cuestas or sand hills. Such features can be important in more precisely delineating depositional distributions and formation characteristics. Also, sediment characteristics such as particle size, roundness, mineral composition, and sorting also factor into compaction characteristics of fine-grained layers. These characteristics vary by deposition setting. Young and others (2012) provided depositional facies definitions and predicted flow characteristics. Reasonable parameterization of models should be based on the most accurate representation of geologic conditions possible. Baker (1979) outlined selected faunal markers for various geologic layers, particularly for the Burkeville Confining System and deeper units. As LSGCD moves

into subsequent study phases and collects core samples, such markers should be identified where present in order to accurately determine the geologic layers and aquifer stratigraphy.

Mineralogy, geochemistry, and diagenesis – the properties of clay, mudstones and shale vary greatly depending on the mineralogy and textural characteristics. With respect to clay deposits, the type of clay mineral can affect the compaction characteristics of the interbeds. For example, montmorillonite retains more water than illite which retains more water than kaolinite (Meade, 1964). Kelley and others (2018) note that clays composed of montmorillonite have the highest compressibility.

Wilson (1962) referring to a field trip stop south of LaGrange, Texas on Highway 71 notes that "...X-ray analyses show that the Catahoula in Central Texas is a calcium-montmorillonite without illite. The Oakville and Fleming clay is sodium-rich, mixed-layer montmorillonite with illite". Gabrysch and Bonnet (1976a; 1976b) report that samples collected from the sites shown on Figure 1 indicate the clays in the Chicot and Evangeline aquifers are a mix of clay minerals with the Baytown and Johnson Space Center sites being predominantly montmorillonite.

The ionic composition of interstitial fluids (that is, water) and the clay minerals also play a part in the rate of draining of clay porosity and resulting compaction. The American Geological Institute defines diagenesis as "the process involving physical and chemical changes in sediment after deposition that converts it to consolidated rock; includes compaction, cementation, recrystallization, and perhaps replacement as in the development of dolomite (American Geological Institute, 1976). Such factors can only be assessed by detailed sedimentation and geochemistry models, which are beyond the scope of this study, or on a site-by-site basis by collecting core samples of the formations.

- Thickness and distributions of individual clay interbeds particularly as related to the sand intervals that form primary producing zones for wells in Montgomery County. Kelley and others (2018) provided a general summary comparing and contrasting thicknesses of individual clay beds in the various layers of the Gulf Coast Aquifer System. In the subsequent section we discuss our data collection and analysis of clay layer distribution within Montgomery County. In particular, we begin an assessment of the vertical and lateral distributions of clay interbeds and the positioning with respect to producing intervals in the Gulf Coast Aquifer System.
- Geologic age of clay layers Gabrysch (1982) stated, "It is suspected that compressibility of the material is related to the age of sediments and the depth of burial." Similarly, the U.S. Geological Survey did not simulate compaction in the original Northern Gulf Coast groundwater availability model noting that the clay layers in the Jasper and Burkeville "…are geologically older, more deeply buried, and therefore more consolidated relative to the sediments of the Chicot and Evangeline aquifers" (Kasmarek, 2013). Prozorovich (1964) states that geologic age is not a controlling factor with respect to compaction. However, more recently Puttiwongrak and others (2021) concluded that geologic time does affect compaction. As additional information is gathered, particularly subsurface samples, relative importance of various factors can be evaluated.

Along with the parameters discussed by Kelley and others (2018), these additional types of factors must be carefully considered in three-dimensional space when developing concepts and parameters associated with compaction assessments and models. Gabrysch and Bonnet (1976a) note the importance of understanding the variability of distributions and characteristics of clay layers and their properties because the ratio of subsidence to water-level declines "…is not constant in time or uniform in space". Additionally, Gabrysch offers that such variations are "…caused primarily by the difference in total clay thickness, individual clay-bed thickness, and clay characteristics. The depth of the overburden and the amount of load to which the material has been previously subjected must also be considered" (Gabrysch and Bonnet, 1976a).

GULF COAST AQUIFER SYSTEM GEOLOGIC STRUCTURE

Our evaluation of the geologic structure aimed to improve the mapping of the elevation of the top and bottom of the subsurface hydrogeologic formations and to improve the understanding of the thicknesses of sand and clay intervals within the formations within Montgomery County. For decades a common approach was taken by groundwater professionals towards the delineation of water bearing units of the Gulf Coast Aquifer System in Montgomery and surrounding counties (Popkin, 1971; Gabrysch and Bonnet, 1974; 1976a; 1976b; Baker, Jr., 1979; Espey, Huston & Associates, Inc., 1979; Carr and others, 1985; Kasmarek and Robinson, 2004; Kasmarek, 2013). The delineation of the hydrogeologic units in this study continues that approach, combining an extensive understanding of practical local hydrogeology with geophysical log analysis.

<u>Hydrostratigraphy</u>

The Gulf Coast Aquifer System is comprised of, from shallowest (youngest) to deepest (oldest), the Chicot Aquifer, Evangeline Aquifer, Burkeville Confining Unit, the Jasper Aquifer, and the Catahoula Formation. The principal aquifers that provide groundwater in Montgomery County include the Chicot, Evangeline, and Jasper aquifers.

Figure 11 shows the surface geology with the estimated outcrop areas and updip extent of the Chicot, Evangeline, and Jasper aquifers and Burkeville Confining Unit within Montgomery County. The aquifer outcrops shown on Figure 11 were adopted from LBG-Guyton Associates (2016). Montgomery County has a surface area of approximately 1,077 square miles. The Chicot Aquifer outcrop is the largest outcrop in the county and has an estimated area of about 798 square miles. The Evangeline Aquifer is located updip from the Chicot Aquifer outcrop and has an estimated area of about 223 square miles. The outcrop of the Jasper Aquifer can be found in the far northwestern part of Montgomery County and has an estimated area of approximately 24 square miles. The Burkeville Confining Unit is positioned between the outcrops of the Evangeline and Jasper aquifers and has an estimated area of about 32 square miles. The Catahoula Formation outcrop is further north and is not found in Montgomery County.

The geology of the Gulf Coast Aquifer System consists of a complex system of alternating layers of discontinuous sand, silt and clay. The similarities of sediments within each geologic unit can make it difficult to identify the individual geologic units that comprise the hydrogeologic units on geophysical logs. To put the complexity of the Gulf Coast Aquifer System into perspective, it should be noted that site-specific subsurface conditions must be evaluated for each water well that is constructed in the Gulf Coast Aquifer System in the greater Houston area.

Table 3 shows a correlation of the geologic and hydrogeologic units of the Gulf Coast Aquifer System within and near Montgomery County (Popkin, 1971; Young and Draper, 2020). The Chicot Aquifer is composed of the Beaumont, Lissie, and Willis formations. The Beaumont and Lissie formations are of Pleistocene age and the Willis Formation is of Pliocene age. The Goliad Sand and part of the Fleming Group (Upper Lagarto Formation) comprise the Evangeline Aquifer. The Burkeville Confining Unit is made up of the Middle Lagarto Formation and can extend into the upper and lower sections of the Lagarto Formation of the Fleming Group. The Jasper Aquifer also belongs to the Fleming Group and includes the Lower Lagarto and Oakville formations. There is some uncertainty

as to which geologic formation(s) would encompass the upper and lower sections of the Jasper Aquifer. The Catahoula Formation is of Oligocene age. The formations generally outcrop in bands that parallel the Gulf Coast and typically increase in depth and thickness to the south and southeast toward the coast.

The updip extent of the Chicot Aquifer generally aligns with the updip extent of the Willis Formation outcrop. The Lissie Formation can be found in the south and southeast parts of Montgomery County. The 2014 Bureau of Economic Geology Digital Geologic Atlas of Texas shows the Willis Formation (landward belt) and the Fleming Formation occurring at land surface in the northwest part of the county. The Evangeline Aquifer, Burkeville Confining Unit, and Jasper Aquifer are estimated to outcrop in the area where these formations outcrop. Note that the Willis Formation (landward belt) shown in the northwest part of Montgomery County on the Bureau of Economic Geology Digital Atlas of Texas is not included in Table 3.

Figure 11. Montgomery County surface geology and approximate aquifer outcrop areas (Bureau of Economic Geology, 2014; LBG-Guyton Associates, 2016).

Table 3.	Hydrogeologic and geologic units of the Gulf Coast Aquifer System within and near
	Montgomery County (Popkin, 1971; Young and Draper, 2020).

Epoch	Hydrogeologic Unit	Geologic Unit		
Holocene	Alluv	vium		
	Chicot	Beaumont Clay		
Pleistocene	Aquifer	Lissie Formation		
Pliocene		Willis Form		tion
	-	Goliad Sand		Upper
	Evangeline Aquifer			Lower
Miocene				Upper
	Burkeville Confining Unit	Fleming Formation	Lagarto	Middle
	Upper Jasper Aquifer Lower Jasper Aquifer		Oakv	Lower /ille
Oligocene	Catahoula		Catahoula	

The Chicot and Evangeline aquifers are considered a leaky artesian aquifer system consisting of unconsolidated and discontinuous layers of hydraulically connected sand and clay. The delineation of the Chicot and Evangeline aquifers can be difficult because an areally extensive confining unit does not exist between the two aquifers. Jorgensen (1975) discusses hydraulic conductivity as a basis for separating the Chicot Aquifer and Evangeline Aquifer in the Houston area. Differences in hydraulic conductivity are thought to cause, in part, differences in water level heads or elevations between the two aquifers. The differences in the static water level heads or elevations are noticeable and can be substantial in some areas, with the static water levels or heads in water wells completed in the Chicot Aquifer being shallower versus the static water levels in water wells completed in the Evangeline Aquifer. There also are differences in lithology, permeability and water quality in the Chicot Aquifer and Evangeline Aquifer. Geophysical logs of the test holes for water wells and oil and gas wells also have been used to estimate the resistivity of sand layers, the thicknesses of sand and clay units and help differentiate the contact of the Chicot and Evangeline aquifers in the greater Houston area.

Within the study area, the Burkeville Confining Unit is an aquitard or relatively impermeable layer that is positioned between the Evangeline and Jasper aquifers. The Burkeville Confining Unit can contain fresh to slightly saline water contained in individual sand layers but is considered a confining unit due to its large percentage of silt and clay compared to the Evangeline and Jasper aquifers (Baker,

Jr., 1979). The sand layers found in the Burkeville are typically thin and are not considered to be hydraulically connected.

While usually recognized as one hydrogeologic unit, the Jasper Aquifer can be divided into two sections, the Upper Jasper and Lower Jasper. Popkin (1971) had classified the Jasper Aquifer in Montgomery County into two units based on lithology, with the upper portion containing a massive sand layer and the lower part containing mostly interbedded sand and clay. The base of the Lower Jasper Aquifer as discussed by Popkin (1971) extends to a deeper elevation than what is considered the base of the Jasper Aquifer today. Baker, Jr. (1979) classified the Jasper Aquifer as a single hydrogeologic unit and interpreted the base of the Jasper Aquifer at a shallower elevation than Popkin's (1971) base of the Lower Jasper Aquifer. The base of the Jasper Aquifer corresponding to the United States Geological Survey Source Water Assessment Program dataset (Strom and others, 2003) gained acceptance in Montgomery County through a LSGCD Groundwater Panel review during the early 2010's as the Catahoula Formation was being explored as an alternative water resource.

The Catahoula Formation is below the base of the Jasper Aquifer and provides a fresh groundwater supply in the north part of Montgomery County where the formation can contain water with a total dissolved solids concentration of less than 1,000 milligrams per liter. Exploration of the Catahoula Formation as a potential water supply has occurred in a several areas of Montgomery County. Many of these efforts resulted in the completion of large capacity water wells screening the Jasper Aquifer due to the presence of brackish groundwater in the deeper portions of the Catahoula in southern Montgomery County.

Subsurface geologic faults and large oil and gas field locations in the vicinity of Montgomery County are shown on Figure 12. Oil and gas drilling activities are often concentrated at or near subsurface geologic features. Figure 13 shows the locations of oil and gas well and/or test hole locations in and near Montgomery County based on datasets available from the Railroad Commission of Texas (RRC, 2021). It should be noted that this is not a comprehensive location map for all oil and gas wells and/or test holes in this area. The regional dip, subsurface geologic structure, formation thickness and/or groundwater quality may be influenced by geologic structures such as salt domes (TC&B, 2004).

The Conroe Oil Field is the largest oil and gas field in Montgomery County and is located to the southeast of the City of Conroe. Discovered in 1931, the Conroe Oil Field is located over a deep-seated salt dome that occurs at depths of greater than 5,000 feet (TC&B, 2004). Other salt domes in the vicinity of the study area include the Hockley Dome and Humble Dome in Harris County and the North Dayton Dome in Liberty County as shown on Figure 13.

Figure 12. Subsurface faults and large oil and gas fields in the vicinity of Montgomery County (base map from the Tectonic Map of Texas, Ewing, 1991).

Figure 13. Locations of oil and gas wells or test holes (based on available data from the RRC, 2021).

Geophysical Log Evaluation

One of the goals of the LSGCD Phase 2 Subsidence Study is to improve the mapping and understanding of the subsurface hydrogeologic formations of Montgomery County. Geophysical logs are an important resource that can be utilized to estimate the depths, thicknesses, and composition of the subsurface hydrogeologic units that make up the Gulf Coast Aquifer System.

Geophysical or electric logs are evaluated using the resistivity curves that are shown to the right of the depth scale on the log along with other curves (such as, natural gamma, spontaneous potential, or porosity) when available. As the name implies, these resistivity curves measure the resistivity of the sands, clays, and fluids of the subsurface formations. Clean and coarse sands will have higher resistivity values than fine grained sand, sand intermixed with silt, silt, or clay (lowest resistivity values). Resistivity curves also can provide information on the general mineralization or gross quality of water within subsurface formations. Freshwater sands have higher resistivity values than sands that contain water with more mineralization and higher concentrations of total dissolved solids. The properties of resistivity and conductivity are inverses of each other, so higher resistivity equals lower conductivity. As a result, water that contains more dissolved minerals (that is, higher total dissolved

solids concentration) has a higher electrical conductivity and a lower electrical resistivity than water that has relatively low mineralization or total dissolved solids concentration.

Evaluation of spontaneous potential logs can be another way to assess the quality of the water contained within the subsurface formations. The spontaneous potential log is normally shown to the left of the depth scale on a geophysical log. The spontaneous potential curve will show little deflection as the logging tool passes through freshwater sands as freshwater is not highly conductive. The spontaneous potential curve will show more deflection as the logging tool passes through sands that contain water with higher total dissolved solids values.

For this study, the mapping of hydrogeologic units within Montgomery County focused on the Chicot, Evangeline, and Jasper aquifers and the Burkeville Confining Unit. The Jasper Aquifer has been divided into upper and lower units. The delineation of the base and total thickness of the Chicot, Evangeline, Burkeville, and Upper Jasper is based on geophysical log review. The base of the Lower Jasper Aquifer was established for this study using the United States Geological Survey Source Water Assessment Program dataset (Strom and others, 2003).

LSGCD currently permits production from the Chicot and Evangeline aquifers as a single combined aquifer. However, it is important to understand the properties and structure of the individual aquifer units as these two aquifers are often represented as separate layers in groundwater flow models.

Geophysical Log Limitations

Evaluation of geophysical or electric logs to delineate the aquifers of the Gulf Coast Aquifer System is not an exact science. Selections of the top or bottom of a hydrostratigraphic unit is commonly based on experience and professional opinion. As illustrated later in our evaluation, the opinions regarding the top and bottom of hydrogeologic and geologic units can vary between professionals.

The geophysical log datum is a key component for standardizing the depth scale shown on a log. Often the depth shown on geophysical logs is converted to elevation relative to sea level in order to correct for variations in the land surface. The header of the geophysical log may contain the elevation of ground level, Kelly bushing, and drill floor, but often one or more pieces of this information is not available.

Acquiring geophysical logs that start shallow enough to include the base of the Chicot Aquifer was a priority consideration in our geophysical log assembly process. Locating logs that start shallow enough to include the base of Chicot Aquifer was challenging. Often the logs that have a top logged interval showing the base of Chicot Aquifer are relatively older (including from the 1940's) and can potentially be difficult to interpret due to the image quality of the log.

Geophysical Log Data

We evaluated a total of 146 geophysical logs obtained from public and private sources as part of this study. Most of the geophysical logs reviewed originate from oil and/or gas wells or test holes. The public sources for the geophysical logs include the TWDB Brackish Resources Aquifer Characterization System database (2021a) and the Texas Commission on Environmental Quality Water Well Report Viewer (2021). Geophysical logs also were purchased from a commercial log library in areas where geophysical log coverage was limited or not available from public sources. The

search radius for the geophysical logs extends up to 10-miles from Montgomery County in an effort to ensure adequate areal coverage. Figure 14 shows the locations of geophysical logs reviewed as part of this study.

Figure 14. Locations of geophysical logs evaluated for this study.

The datum of the geophysical logs used in this study is based on the land surface elevation. The depth of the hydrogeologic unit selected from the geophysical log has been standardized to account for changes in the land surface elevation by converting the depth of the hydrogeologic unit to elevation relative to sea level. Appendix 1 includes a table that provides geophysical log data utilized in this study including the: Geophysical Log Number, API Number, State Well Number or "Q" Number, well or test hole operator and well ID, latitude and longitude, land surface elevation, and estimated hydrogeologic unit depth and elevation.

Typical Geophysical Logs

We identified 16 typical geophysical logs within Montgomery County and areas to the east and southeast of the county boundary to demonstrate the selection of the base of the hydrogeologic units in this study. Figure 15 shows the location of the geophysical type logs and reduced copies of the geophysical logs are included in Appendix 2. It should be noted that the estimated bases of the hydrogeologic units are shown in depth below land surface on the geophysical logs in Appendix 2.

Figure 15. Locations of typical geophysical logs.

The geophysical logs in Appendix 2 show the estimated base of the Chicot, Evangeline, and Upper Jasper aquifers and Burkeville Confining Unit developed for this study, the base of the Jasper Aquifer according to the United States Geological Survey Source Water Assessment Program dataset (Strom and others, 2003), and the base of the Lower Jasper Aquifer identified by Popkin (1971). We also identified the picks by Young and others (2012) and Young and Draper (2020), GULF-2023 dataset, on selected logs

In this study, the base of the Chicot Aquifer is generally estimated to occur at the base of shallow sands which have higher resistivity values and limited clay content. The higher resistivity values of the Chicot Aquifer often coincide with lower total dissolved solids concentrations in water collected and analyzed from water wells completed in the Chicot Aquifer relative to that of the water samples collected from wells completed in the Evangeline Aquifer.

Also, it should be noted that the base of the Lower Jasper as estimated by Popkin (1971) is significantly deeper than the United States Geological Survey Source Water Assessment Program base of Jasper estimate that gained acceptance in the early 2010's. In north Montgomery County, some of the sands that are screened in wells completed in the Catahoula Formation were considered to be part of the Lower Jasper according to the base of Lower Jasper Aquifer estimated by Popkin (1971).

Chicot Aquifer

The Chicot Aquifer is the shallowest hydrogeologic unit of the Gulf Coast Aquifer System occurring in Montgomery County and the aquifer outcrop is present at land surface over approximately 74 percent of the county. A lower amount of groundwater is pumped from the Chicot Aquifer relative to the Evangeline and Jasper aquifers in Montgomery County, with the primary use of the water being for domestic, irrigation (domestic and commercial), and some limited public supply.

Alternating layers of sand, silt, clay, and intermittent gravel comprise the Chicot Aquifer. The transition between the Chicot and Evangeline aquifers is not commonly clear and distinct. Historically, many United States Geological Survey and other scientists, geologists and engineers have used practical hydrogeology concepts, including noticeable differences in lithology, permeability, water levels, and water quality combined with geophysical log interpretation to identify the transition between the Chicot and Evangeline aquifers.

Figure 16 and Figure 17 show the estimated elevation of the base of the Chicot Aquifer and the estimated aquifer thickness, respectively. Evaluation of geophysical logs show that the aquifer is increasing in depth and thickness as the aquifer dips to the southeast towards the Gulf of Mexico. The Chicot Aquifer is estimated to dip at a rate of approximately 15 to 25 feet per mile to the southeast based on the geophysical logs used in this study. The base of the Chicot Aquifer is present at land surface in the outcrop area and is estimated to extend to an elevation of about -375 feet relative to sea level in the southeast part of Montgomery County. The thickness of the Chicot Aquifer increases with distance from the estimated updip extent of the aquifer outcrop to an estimated maximum thickness of approximately 470 feet in the southeast part of the county. The average thickness of the Chicot Aquifer in Montgomery County is estimated to be about 250 feet.

The estimated base of Chicot Aquifer elevation contour map developed for Montgomery County as part of this study is similar to the base of Chicot Aquifer maps shown in Espey, Huston & Associates (1979) and Carr and others (1985). The elevation of the base of the Chicot Aquifer is at or near sea level just to the north of the City of Conroe and the elevation of the base of the Chicot Aquifer is approaching about -400 feet relative to sea level near the Montgomery/Harris County line in the southeast part of Montgomery County in all three studies.

Evangeline Aquifer

The Evangeline Aquifer is positioned below the Chicot Aquifer and above the Burkeville Confining Unit. The aquifer outcrop is present at land surface over approximately 21 percent of Montgomery County. Groundwater pumped from the Evangeline Aquifer is utilized for public supply, commercial, irrigation and industrial uses.

The Evangeline Aquifer is made up of discontinuous layers of alternating sand and clay. Geophysical logs indicate that the Evangeline Aquifer dips at a rate of approximately 40 to 50 feet per mile to the southeast in Montgomery County. Figure 18 shows the estimated base of the Evangeline Aquifer occurring at a depth of about -800 feet relative to sea level in the southwest part of the county and about -1,400 feet relative to sea level in the southeast. Figure 19 shows the estimated thickness of the Evangeline Aquifer which increases with distance from the approximate updip extent in northwest Montgomery County to an estimated maximum thickness of more than 1,000 feet in the southeast part

of the county. The average thickness of the Evangeline Aquifer in Montgomery County is about 540 feet.

Figure 16. Estimated base of the Chicot Aquifer within Montgomery County.

Figure 17. Estimated thickness of the Chicot Aquifer within Montgomery County.

Figure 18. Estimated base of the Evangeline Aquifer within Montgomery County.

Figure 19. Estimated thickness of the Evangeline Aquifer within Montgomery County.

Burkeville Confining Unit

The Burkeville Confining Unit is vertically positioned between the Evangeline and Jasper aquifers, and the outcrop is estimated to be present at land surface over approximately three percent of Montgomery County. The high percentage of clay content in the Burkeville Confining Unit limits movement of groundwater between the Jasper and Evangeline aquifers. Limited sands occur in the Burkeville and are thought to not be hydraulically connected. In some areas completion of smaller volume domestic wells is possible in the Burkeville Confining Unit; however, the sands of the Burkeville Confining Unit might not be capable of fully supporting a moderate to large capacity water well. In some areas large capacity wells have been constructed with screen set opposite sands in the Burkeville, but the percentage of total well screen in the Burkeville is very small compared to the entire screen interval of the well, which probably is primarily in the shallower Evangeline Aquifer or the upper part of the Jasper Aquifer.

The estimated base of the Burkeville Confining is shown on Figure 20. The elevation of the base of the formation is estimated to occur at a depth of about -1,100 feet relative to sea level in the southwest part of the county and about -1,870 feet relative to sea level in the southeast part of the county. The estimated dip of the base of the Burkeville Confining Unit (equivalent to the top of the Jasper Aquifer) is generally to the southeast at a rate of approximately 40 to 50 feet per mile. The estimated thickness of the Burkeville Confining Unit is shown on Figure 21 and generally increases with distance from the approximate updip extent located in far northwest Montgomery County to an estimated maximum thickness of about 480 feet in the southeast part of the county. The Burkeville Confining Unit thickness is estimated to range from about 200 to 300 feet in a large part of Montgomery County, with an average thickness of the formation estimated to be approximately 240 feet.

Figure 20. Estimated base of the Burkeville Confining Unit within Montgomery County.

Figure 21. Estimated thickness of the Burkeville Confining Unit within Montgomery County.

Jasper Aquifer

The Jasper Aquifer is a significant source of groundwater production in Montgomery County. It is positioned between the overlying Burkeville Confining Unit and the underlying Catahoula Formation. Groundwater produced from the Jasper Aquifer is used for public, industrial, and other water supply, but also can be used for domestic purposes in the shallower, updip part of the formation. The Jasper Aquifer outcrop is present at land surface in approximately two percent of Montgomery County, the smallest of any hydrogeologic unit in the county.

As the focus of this study is on the principal hydrogeologic units from which groundwater is produced in Montgomery County, we separated the Jasper Aquifer into upper and lower units based on lithology. The Upper Jasper Aquifer contains more sand than the Lower Jasper and is the section of the aquifer screened in moderate to large capacity public supply and industrial wells throughout Montgomery County and in parts of north and northwest Harris County. The thicker sands that comprise the Upper Jasper Aquifer can contain brackish groundwater in downdip areas of the formation located in southeast Montgomery County. The Lower Jasper is made up of mostly interbedded sand and clay and the water contained within the sands can often be of brackish water quality. At the time of this study there has been no development of the brackish groundwater resources available from the Jasper Aquifer in Montgomery County. The United States Geological Survey Source Water Assessment Program dataset corresponding to the base of the Jasper Aquifer (Strom and others, 2003) was used as the base of the Lower Jasper in this study.

Upper Jasper Aquifer

The base of the Upper Jasper Aquifer is estimated to dip at a rate of approximately 50 to 60 feet per mile to the southeast. Figure 22 shows the estimated elevation of the base of the Upper Jasper Aquifer, with the elevation of the base of the Upper Jasper Aquifer occurring at a depth of about -1,500 feet relative to sea level in the southwest and about -2,350 feet relative to sea level in the southeast part of the county. Figure 23 illustrates the estimated thickness of the Upper Jasper Aquifer which increases with distance from the approximate updip extent in far northwest Montgomery County. The maximum estimated thickness is about 570 feet in the southeast part of the county. The average thickness of the Upper Jasper Aquifer is estimated to be about 390 feet in Montgomery County.

Lower Jasper Aquifer

The base of the Lower Jasper Aquifer was generated from the base of the Jasper Aquifer in the United States Geological Survey Source Water Assessment Program dataset (Strom and others, 2003) and can be seen on Figure 24. Strom and others (2003) indicate that the Source Water Assessment Program base of the Jasper Aquifer was created using well data from cross sections included in Baker, Jr. (1979; 1986). The cross sections included in Baker, Jr. (1979; 1986) have limited geophysical log data within Montgomery County. The estimated dip of the base of the Lower Jasper Aquifer is approximately 50 to 60 feet per mile to the southeast. The elevation of the base of the Lower Jasper Aquifer is estimated to occur at a depth of about -2,000 feet relative to sea level in the southwest part of the county and about -2,900 feet relative to sea level in the southeast part.

Figure 25 shows the approximate thickness of the Lower Jasper Aquifer based on the estimated base of the Upper Jasper (as defined in this study) and the base of the Jasper Aquifer as defined by the

United States Geological Survey Source Water Assessment Program dataset (Strom and others, 2003). The estimated thickness of the Lower Jasper Aquifer in Montgomery County ranges from approximately 100 feet in the northwest part of the county to approximately 900 feet in the east part of the county, with an average thickness of about 500 feet.

Combined Jasper Aquifer

Figure 26 shows the estimated thickness of the Jasper Aquifer (combined upper and lower units) based on the difference between base of the Burkeville Confining Unit as delineated in this study and the base of the Jasper Aquifer depicted by the United States Geological Survey Source Water Assessment Program dataset. This thickness using the base of the Jasper Aquifer as defined by the United States Geological Survey Source Water Assessment Program dataset provides a general estimate of the total thickness of the Jasper Aquifer using the surface that was recognized as the base of the Jasper by LSGCD in the early 2010's. The total thickness of the Jasper Aquifer is estimated to range from about 150 feet in the outcrop area in the northwest part of Montgomery County to an estimated maximum thickness of approximately 1,280 feet in the east part of the county. The estimated average thickness of the Jasper Aquifer (combined upper and lower units) is approximately 890 feet.

The estimated thickness of the Jasper Aquifer (combined upper and lower units) based on Popkin (1971) is substantially greater than the estimated thickness using the United States Geological Survey Source Water Assessment Program dataset. An estimated thickness for the total Jasper Aquifer based on Popkin (1971) was developed using data assembled for the 2004 LSGCD Groundwater Resources Management Information Report for Montgomery County (TC&B, 2004). Estimated total Jasper Aquifer thicknesses based on the Popkin (1971) methodology range from approximately 1,490 feet to approximately 3,040 feet in Montgomery County, with an average thickness of about 2,100 feet.

Figure 22. Estimated base of the Upper Jasper Aquifer within Montgomery County.

Figure 23. Estimated thickness of the Upper Jasper Aquifer within Montgomery County.

Figure 24. Estimated base of the Lower Jasper Aquifer within Montgomery County based on the United States Geological Survey Source Water Assessment Program dataset (Strom and others, 2003).

Figure 25. Estimated thickness of the Lower Jasper Aquifer within Montgomery County as the difference between the base of the Upper Jasper as defined as part of this study and the base of the Jasper Aquifer as defined by the United States Geological Survey Source Water Assessment Program dataset.

Figure 26. Estimated total thickness of the Jasper Aquifer within Montgomery County as the difference between the base of the Burkeville Confining Unit as defined in this study and the base of the Jasper Aquifer as defined by the United States Geological Survey Source Water Assessment Program dataset.

GULF-2023 Groundwater Flow Model

In an effort to improve future groundwater availability models of the Gulf Coast Aquifer System, additional stratigraphic and lithologic data beyond the existing Chicot, Evangeline, and Jasper aquifers and Burkeville Confining Unit data was developed by Young and others (2012). A lithostratigraphic approach, as defined by Young and others (2012), involves interpolating formation lithologies from geophysical logs and correlating the lithologies between additional geophysical logs (Young and other, 2012). To update the hydrostratigraphic framework of the Gulf Coast Aquifer System, Young and others (2012) utilized a chronostratigraphic approach and sequence stratigraphy to identify clay-dominated flooding surfaces of the same age and subsequently subdivide the Chicot, Evangeline, and Jasper aquifers and Burkeville Confining Unit into sub-aquifer layers.

As a result of the work performed, Young and others (2012) subdivided the Chicot, Evangeline, and Jasper aquifers and the Burkeville Confining Unit of the Gulf Coast Aquifer System into 10 subunits as follows:

- Chicot Aquifer: 1) Beaumont Clay; 2) Lissie Formation; 3) Willis Formation;
- Evangeline Aquifer: 4) Upper Goliad; 5) Lower Goliad; 6) Upper Lagarto;
- Burkeville Confining Unit: 7) Middle Lagarto;
- Jasper Aquifer: 8) Lower Lagarto; 9) Oakville Formation; and 10) Catahoula Formation

Young and Draper (2020) updated the extent of the Burkeville Confining Unit and the base of the Chicot Aquifer to support the development of the GULF-2023 groundwater model. The GULF-2023 groundwater model is a six-layer groundwater flow model that is currently being developed by the United States Geological Survey for the Harris-Galveston Subsidence District. The following layers are assigned to the GULF-2023 model: Layer 1 – Alluvium and Beaumont Clay; Layer 2 – Chicot Aquifer; Layer 3 – Evangeline Aquifer; Layer 4 – Burkeville Confining Unit; Layer 5 – Jasper Aquifer; and Layer 6 – Catahoula Formation.

Young and Draper (2020) updated the subdivided formations defined by Young and others (2012) by adjusting the base of the Chicot Aquifer (top of the Evangeline Aquifer), the top of the Burkeville Confining Unit (base of the Evangeline Aquifer), and the base of the Burkeville Confining Unit (top of Jasper Aquifer) to support the GULF-2023 model. Regarding the updated Burkeville Confining Unit utilized in the GULF-2023 model, Young and Draper (2020) state:

"Because the Burkeville unit defined by Baker (1979) is a lithostratigraphic unit that is not bounded by isochronous boundaries and exists across the Upper, Middle and Lower Lagarto formations, it cannot be accurately represented by any single chronostratigraphic formation defined by Young and others (2010, 2012). To create a "lithostratigraphic-based" Burkeville Unit from the clays and sand sequences generated by Young and others (2010, 2012), we correlated the sand and clay sequences in the Upper, Middle and Lower Lagarto Formations based on a lithostratigraphic approach. This approach provides a practical integration of the lithostratigraphic and chronostratigraphic approaches to represent the conceptualization by Baker (1979) of the Burkeville Confining Unit."

Young and Draper (2020) indicated that the Willis Formation (base of Chicot Aquifer) was primarily updated to incorporate additional geophysical logs into the analysis, increasing the number of logs

used to estimate the base of the Willis Formation from 290 logs to 650 logs with stratigraphic picks. Young and Draper (2020) state:

"At each geophysical log, the location of the base of the Willis was selected to represent a transition from the sand-rich basal Chicot Aquifer (Willis Formation) to the sand-poor top of the Evangeline. In most of the logs, the adjustment to the previous picks by Young and others (2010, 2012) was less than 100 feet."

GULF-2023 Hydrogeologic Surface Comparison

The base of the geologic units (with hydrogeologic equivalents) developed by Young and others (2012) and the updated picks of the hydrogeologic units based on Young and Draper (2020) are shown on the typical geophysical log examples included in Appendix 2, where available. Hydrogeologic picks approximated from Young and Draper (2020) are noted as the 'Gulf 2023 Dataset' and the geologic formation picks approximated from Young and others (2012) labeled 2012 and include the hydrogeologic unit where applicable.

The picks shown on the geophysical logs in Appendix 2 were based on common API numbers for geophysical logs used in this study and the referenced reports. The appendices included with Young and others (2012) and Young and Draper (2020) provide the geophysical log API number, datum, and the estimated elevation of the hydrogeologic/geologic unit. The geophysical log datum and hydrogeologic/geologic unit elevation were used to convert the elevation of the base of the hydrogeologic/geologic unit to depth below land surface for a cleaner presentation of the picks on the geophysical logs.

Based on a limited number of geophysical logs common between this study and Young and others (2012), the base of the hydrogeologic units selected by Young and others (2012) appears to be generally deeper in the subsurface in the southeast part of Montgomery County relative to this study. The Burkeville Confining Unit/Middle Lagarto as defined in Young and others (2012) include sand intervals that are considered to be part of the Upper Jasper Aquifer in this study. It should be noted that a number of high-capacity water wells in Montgomery County that screen sands of the Upper Jasper Aquifer would have been included as part of the Burkeville Confining Unit based on the chronostratigraphic formation picks of Young and others (2012).

Modifications to the Young and others (2012) dataset by Young and Draper (2020) to support the GULF-2023 model included adjustments to the top and bottom of the Burkeville Confining Unit and the base of the Chicot Aquifer. Young and Draper (2020) used a lithostratigraphic based approach to adjust the Burkeville Confining Unit elevations, which yielded formation picks that are generally similar to the picks defined in this study for most parts of Montgomery County.

A chronostratigraphic approach was utilized by Young and Draper (2020) to update the base of Chicot Aquifer in support of the GULF-2023 model. The base of the Chicot Aquifer as defined by Young and Draper (2020) is generally deeper than the base of Chicot Aquifer defined in this study and previous work by others and becomes increasingly deeper in the southeast part of Montgomery County. The depth of the estimated base of Chicot Aquifer (Young and Draper, 2020) exhibits larger increases in depth in parts of Liberty and Harris counties based on geophysical logs reviewed within the search area of this study.

The estimated depth of the base of the Chicot Aquifer as defined by Young and Draper (2020) can be significantly deeper in parts of northeast and east Harris County than defined in previous work. The estimated base of the Chicot Aquifer developed by Young and Draper (2020) can reach depths that are approximately twice as much as previous depth estimates in areas of Harris County.

GULF-2023 Observation Well Designations

The differences between the estimated aquifer elevations developed in support of the GULF-2023 model by Young and Draper (2020) and work performed by others can be illustrated by plotting the observation wells used in the development of the United States Geological Survey 2021 Water-Level Altitude Map Series and highlighting the observation wells that will receive new aquifer designations based on the GULF-2023 model.

In May 2021, LSGCD received provisional water level data in tabular form that was collected and provided by the United States Geological Survey (USGS, 2021b). The provisional table included a column that displayed the newly assigned aquifer designation based on the GULF-2023 model surfaces generated from the Young and Draper (2020) dataset. Original aquifer designations available from the United States Geological Survey National Water Information System Web Interface Groundwater Levels for Texas (2021a) were compared to the newly assigned aquifer designations.

Figure 27 shows the United States Geological Survey observation well locations that have an updated aquifer designation based on the GULF-2023 model surfaces that were developed using data from Young and Draper (2020). Based on the provisional data provided by the United States Geological Survey in May 2021, it is estimated that approximately 36 percent (165 out of 458) of the water wells included in the United States Geological Survey observation program experienced a change in aquifer designation in Montgomery and Harris counties.

Prior to the adoption of the new approach taken in the delineation of the hydrogeologic units for the GULF-2023 model, a large number of the wells in the United States Geological Survey observation program had been developed and evaluated over several decades by experienced local United States Geological Survey technical staff. In addition, previous United States Geological Survey aquifer data and designations have been reviewed and generally accepted by groundwater engineers, hydrogeologists, and consultants with decades of local experience in the greater Houston area, based on assessment of site-specific geophysical logs, well material setting sheets and construction data, and well pumping test data. Reassignment of the observation wells may affect conceptual understanding of groundwater flow in the Gulf Coast Aquifer System and ultimately how that flow is simulated in the GULF-2023 model.

Figure 27. United States Geological Survey observation wells assigned a new aquifer designation based on the GULF-2023 groundwater flow model (based on provisional data provided by the United States Geological Survey in May 2021).

Summary of Clay Layer Thickness Based on Geophysical Log Analysis

It has long been understood that most compaction in sediments occurs in layers dominated by clay. Therefore, the thickness of clay layers within aquifers is one key in understanding the amount of subsidence that may occur in areas of groundwater withdrawal. The United States Geological Survey has produced maps showing cumulative clay thickness for the Chicot, Evangeline, and Jasper aquifers across the Houston Area including the entirety of Montgomery County (Kasmarek and Robinson, 2004). Similarly, LSGCD published maps showing the clay thickness for the geologic units that comprise the Chicot, Evangeline, and Jasper aquifers, and the Burkeville Confining Unit, all based on GIS operations utilizing datasets by Young and others (2012) (see Thornhill and Keester (2020)).

The United States Geological Survey conducted some of the definitive work relating to the depth of burial and the compressibility of clay layers in the Chicot and Evangeline aquifers in selected areas of southern Harris County and Galveston County, noting, "The time lag between loading and ultimate consolidation is dependent upon the thickness and permeability of the clay bed" (Gabrysch and Bonnet, 1976a). Similarly, Kelley and others (2018) noted the relationship between the fluid-pressure reductions in groundwater producing zones (that is, sands), the thickness of individual clay beds (sometimes called interbeds), the vertical hydraulic conductivity of the clay layers, and the time it takes for compaction to occur. Figure 28, reproduced from Kelley and others (2018) illustrates the relationship of the positioning and thickness of clay interbeds and the compaction of a clay layer between aquifer sand zones.

Figure 28. Illustration of the relationship between the aquifer sands and clay interbeds (reproduced from Kelley and others, 2018).

Kelley and others (2018) provided a summary of individual clay-bed thicknesses for selected logs across much of the Houston area including the southern part of Montgomery County from about Lake Conroe to the southern county border. For this study, we focused on log analysis to determine clay-bed thicknesses and distributions relative to producing intervals (that is, sands) across all of Montgomery County. While total clay thickness is important, understanding the vertical and horizontal distributions of clay layers relative to sand zones that are typically screened in water wells within Montgomery County and the region also affects the understanding of potential compaction. The relationships between the thicknesses of clay layers and the positioning with respect to well-screen intervals can impact the total amount and rate of compaction. Therefore, the work included:

- Analyzing the geophysical logs and making picks categorized as sand, silty or clayey sand, silty or sandy clay and clay. For this evaluation, the zones were simplified as either being "clay" or "sand" based on the predominant geophysical signature;
- Evaluating the clay layers for the Chicot, Evangeline, and Jasper aquifers, as well as for the Burkeville Confining Unit, with respect to total clay thickness, and average clay-layer thickness; and,
- Selecting potential high production sand intervals and evaluating the clay layers within the interval that would likely be screened in a well, and determining the number of clay interbeds, the total clay thickness, the minimum and maximum clay-bed thicknesses, and average interbed thickness.

Due to the age of the logs available, the clay picks were primarily based on induction (that is, resistivity) log signatures, although spontaneous potential curves were also assessed. Because of the log resolution, some thicker sequences of clays are likely comprised of multiple layers of thinner beds which cannot be distinguished based on log interpretation alone.

Figure 29 is a histogram illustrating the clay-bed thickness distribution by hydrologic unit in Montgomery County. The histogram shows that most clay layers are less than 50 feet thick. 58 percent of the clay beds within the Chicot Aquifer are less than 30 feet thick with 89 percent being less than 50 feet thick. For the Evangeline, the percentage of clay beds less than 30 feet thick reduces to 55 percent with 73 percent of the clay beds being less than 50 feet thick. There is an even greater percentage of the clay beds in the Burkeville being greater than 50 feet thick with only 42 percent being less than the 50-foot thickness. In the Upper Jasper, the clay bed thicknesses are similar to the Chicot with about 59 percent being less than 30 feet and 77 percent being less than 50 feet in thickness.

Figure 30 is a violin plot illustrating the distribution of clay thicknesses in the hydrostratigraphic units of the Gulf Coast Aquifer System. The width of the violin plot indicates the relative number of clay beds with a particular thickness and the dots represent the actual clay thickness value. Like the histogram suggests, the width of the violin plots in Figure 30 for the Chicot, Evangeline, and Upper Jasper indicates most of the clay beds are less than 20 feet thick in these aquifers. There are fewer clay bed thickness values for the Chicot and Burkeville than for the Evangeline and Upper Jasper. For Chicot, the fewer clay beds is due to fewer logs of the Chicot interval while for the Burkeville the fewer clay beds is due to the beds generally being thicker.

Figure 29. Histogram illustrating the percentage of clay bed thicknesses by hydrogeologic unit in Montgomery County.

Montgomery County Clay Thickness Distribution

Figure 30. Violin plot illustrating the distribution of clay bed thickness by hydrogeologic unit in Montgomery County.

Appendix 3 provides summary tables characterizing sand and clay layers for 60 log sites in Montgomery County. For the identified sites, we used the hydrostratigraphic picks with our sand and clay determinations to calculate the net sand and net clay percentages. Using our professional judgement and experience, we also identified the likely producing interval (that is, where a well is more likely to be screened) within each hydrostratigraphic unit to determine the percentage of sand and clay associated with the producing interval. Appendix 4 provides maps illustrating the percent clay calculations at each evaluated site.

Visual comparison of our calculations with cumulative clay thicknesses presented by Kasmarek and Robinson (2004) suggest the total clay thickness for the Chicot and Evangeline aquifers are similar. However, since Jasper production within Montgomery and northern Harris counties is almost exclusively limited to the Upper Jasper Aquifer, the total clay thickness likely affected by depressurization is thinner than the reported clay thickness of the entire Jasper. Comparing original GAM cumulative clay thickness for the Jasper Aquifer as presented by Kasmarek and Robinson (2004) with Upper Jasper clay-interbed thicknesses suggests that the GAM Jasper clay thicknesses are 2.3 to 4.9 times thicker than the clay interbeds within likely targeted fresh and brackish groundwater zones in the Upper Jasper.

The distribution and thickness of clay layers is critical to understanding the hydraulics, mechanics, magnitude, and timing of compaction and resulting subsidence. Understanding these distributions as related to zones targeted for large-capacity pumping should also be a consideration for future studies and modeling efforts. The information compiled from the log analyses identifying clay and sand layers will be critical in planning subsequent work including planning drilling, logging, and coring efforts.

PHASE 3 DRILLING AND TESTING PLAN

Much of the work by Kelley and others (2018) was based on data collected approximately 50 years ago. Since the work by Gabrysch and Bonnet (1974; 1976a; 1976b), drilling and testing specifically for subsidence investigations has not occurred. As a next step in the District's subsidence investigations, we have developed a drilling and testing plan designed specifically to obtain site-specific data related to the potential compaction of the subsurface geologic units.

Proposed Test Drilling Locations

A first step for the test drilling program is to secure site for conducting the operations. For possible locations we considered several factors, including:

- Areas of observed or projected water level decline in the aquifers
- Areas with anticipated growth or increase in groundwater demand
- Locations with potential collaborators or interested parties
- Locations near existing GPS monitoring sites
- Locations that are accessible for drilling equipment
- Locations with limited geophysical data

Considering these factors, we identified six locations for conducting drilling and testing. These proposed locations are spread across the county and will provide site-specific data that does not place a greater weight on any particular area. Figure 31 illustrates the locations of the proposed drilling locations across the county. Appendix 5 includes a map for each proposed location with notes regarding the proposed site. Our recommended priority of drilling and testing is:

- 1. Lone Star Groundwater Conservation District
- 2. Woodlands Area
- 3. Magnolia Area
- 4. Southeast Area
- 5. Splendora Area
- 6. Montgomery Area

As one may expect, clay bed thicknesses within the hydrostratigraphic units are not uniform across the county. For each of the proposed drilling and testing sites, we associated geophysical log locations to the site based on proximity to the site; that is, if a log location was closer to the LSGCD location than to any other, then it was assigned to the LSGCD location. We then prepared a violin plot for the subset of clay thicknesses associated with the proposed drilling and testing location. These plots are included with the proposed test drilling location maps in Appendix 5.

Figure 31. Proposed drilling and testing locations.

Proposed Data Collection

Proposed test drilling operations will involve drilling a test hole followed by coring selected intervals of the subsurface materials. During drilling of the test hole, a geoscientist will analyze and describe drill cuttings of the subsurface formations collected by the drilling contractor. Following completion of the test hole, a geophysical logging contractor will obtain a geophysical log of the open hole. Following are the geophysical logs we recommend obtaining for the initial test hole:

- Triple Combo (Resistivity, Natural Gamma, and Neutron/Density porosity)
 - o Lithology
 - Water quality
 - o Porosity
- Micro-normal/micro-inverse resistivity
 - Relative permeability (qualitative)
 - Water quality
- Spectral Gamma
 - o Lithology
 - Clay mineral composition
 - Magnetic Resonance
 - o Permeability (quantitative)
 - o Porosity
 - o Movable water

The triple combo geophysical log is standard in the industry for obtaining site-specific depths of the subsurface lithologic materials. The addition micro resistivity provides additional information for the investigator to infer the relative permeability of the subsurface materials and for estimating the dissolved solids concentration of the formation water. With these logs alone we are able to delineate the general subsurface lithology, determine the aquifer intervals, and calculate the net sand and clay as we have done in this Phase 2 Subsidence Investigation. However, there are additional geophysical logs that will provide meaningful insight into the subsurface characteristics.

The spectral gamma log provides an in-situ analysis of the type of clays in the subsurface through measurements of the thorium, uranium, and potassium content. Data from the spectral gamma log will provide insight into the clay composition. Figure 32 illustrates how the type of clay may be determined based on the ratio of thorium and potassium in the mineral. As discussed previously, Kelley and others (2018) note that clays composed of montmorillonite have the highest compressibility (see Other Considerations section). Obtaining the spectral gamma log will improve our understanding of the subsurface clay mineralogy and where compaction may more likely occur due to that mineralogy.

The magnetic resonance logging tool creates a magnetic field that changes the orientation of water molecules within the pore space of the subsurface lithology. The tool then measures the magnetic resonance as the molecules then reorient to their original positions. Processing of the collected measurements then provides information on the porosity and permeability of the formation on a continuous basis. Subsequently, we can estimate the transmissivity of specific subsurface intervals using the thickness of the interval. Figure 33 illustrates the permeability and volumetric water content that can be derived from the magnetic resonance logging data.

Figure 32. Cross plot illustrating clay type determination from spectral gamma ray tool measurements (Arbab and others, 2017).

Figure 33. Illustration of measurements and results from a magnetic resonance log (Vista Clara, Inc., 2022).

In addition to the geophysical logs, we recommend collection of percussion sidewall cores for analysis of depth-specific porosity and mineralogy (Figure 34 illustrates clay mineral identification of a core sample using x-ray diffraction). Sampling depths for these cores will be selected by the onsite professional geoscientist based on the geophysical logging. Following collection, the cores will be submitted to lab for analysis and the results can be used to inform or calibrate the magnetic resonance logging data. In addition, the porosity data collected will aid in our understanding of the specific storage values of the subsurface materials (see the section on Specific Storage for a discussion of the calculation of specific storage values from porosity).

Figure 34. Illustration of clay mineral identification using x-ray diffraction (Arbab and others, 2017).

Once the geophysical logs and samples are collected, we recommend completion of a dedicated waterlevel monitoring well at the location. The completion interval for the dedicated monitoring well could be determined based on the site-specific conditions, stakeholder interest, and input from the property owner. Once the monitoring well is complete, the drilling contractor would move the rig a short distance (30 to 50 feet) from the test hole to collect cores of selected subsurface clay intervals. Following collection of the core samples, a second dedicated water-level monitoring well could be installed to monitor a different sub-surface interval than that of the well completed at the test hole site.

We anticipate coring of up to ten subsurface intervals to collect samples for laboratory analysis. Similar to the sidewall cores, the laboratory would analyze the porosity and mineralogy of the core sample. In addition, the lab would perform oedometer testing to measure the change in void ratio with pressure which would provide a direct comparison to the data reported by Gabrysch and Bonnet (1974; 1976a; 1976b). Finally, the lab will analyze the core for permeability in the vertical direction.

As discussed in the section reviewing the brackish Jasper Aquifer conceptual model, the porosity of the sediments relates to the specific storage (inelastic and elastic) and the amount of compaction that can occur. The vertical permeability (and related hydraulic conductivity) affects the rate of the compaction. While the lab analyses will provide data for only a specific site at specific depths, much like the work of Gabrysch and Bonnet (1974; 1976a; 1976b), the results will inform our understanding of the Gulf Coast Aquifer System characteristics throughout Montgomery County and nearby areas.

Researchers, consultants, regulatory entities, and others have referred to the work by Gabrysch and Bonnet (1974; 1976a; 1976b) for nearly 50 years when discussing the factors affecting compaction and subsidence in the Gulf Coast Aquifer System. Their work has been interpreted and applied to inform the understanding of compaction throughout the Gulf Coast Region despite being limited to a relatively small area. Adding to the body of knowledge by developing physical data related to clay compaction in an updip area of the Gulf Coast Aquifer System, and particularly in the Jasper Aquifer, will provide benefit to the scientific community for years to come and will enhance the data-driven management of groundwater resources by Lone Star Groundwater Conservation District.

SUMMARY AND CONCLUSIONS

Our work during the Phase 2 subsidence investigations focused primarily on two of the most applicable questions from the Phase 1 work. We focused on these questions as they were identified as providing the highest level of support to the data-driven management of groundwater resources by Lone Star Groundwater Conservation District. In addition, the work conducted during this Phase 2 forms a basis for the potential Phase 3 drilling and testing program.

Brackish Jasper Aquifer Conceptual Model

One of the questions under investigation related to the brackish Jasper Aquifer conceptual model develop by Kelley and others (2018). During Harris-Galveston Subsidence District Regulatory Plan Update meetings, United States Geological Survey staff appeared to suggest that they would use this conceptual model as the basis for simulating compaction of the Jasper Aquifer in the GULF-2023 model. Since the conceptual model dictates or guides the subsequent development of a numerical model, it follows that any issues or potential flaws with the conceptual model are also issues or potential flaws with the numerical model. Our review of Kelley and others (2018) revealed questions with their conceptualization of compaction in the Jasper Aquifer.

- Our calculated estimates of inelastic and elastic specific storage of clay samples from Gabrysch and Bonnet (1974; 1976a; 1976b) are similar to those of Kelley and others (2018).
 - Data reported by Gabrysch and Bonnet (1974; 1976a; 1976b) are used to calculate the coefficients needed to determine the inelastic and elastic specific storage of the clay samples. These coefficients (namely, porosity and compressibility) are not reported by Gabrysch and Bonnet (1974; 1976a; 1976b) as stated by Kelley and others (2018).
 - Our evaluation of the porosity and compressibility values results in trend (that is, model) that differs increasing for depths below about 500 feet.
 - Kelley and others (2018) trend through porosity values calculated from the Gabrysch and Bonnet (1974; 1976a; 1976b) data results in unrealistic porosity values for shallow depths.
 - The constant geostatic stress gradient used by Kelley and others (2018) to determine effective burial depth from applied pressure may be too high for the Gulf Coast Region.
- Gabrysch and Bonnet (1974) report laboratory measured hydraulic conductivity for four clay samples, but they do not indicate if it is horizontal or vertical hydraulic conductivity.
 - Kelley and others (2018) state the hydraulic conductivity data from Gabrysch and Bonnet (1974) is a measure of the vertical component.
 - The hydraulic conductivity values from Gabrysch and Bonnet (1974) are consistent with representative values of the horizontal hydraulic conductivity of clays.
 - The minimum hydraulic conductivity values from Gabrysch and Bonnet (1974) are about four times greater than the maximum representative value of the vertical hydraulic conductivity of clays.
 - High values for the vertical hydraulic conductivity of the clay result in a shorter time constant for compaction. That is, compaction occurs at a faster rate.

- Kelley and others (2018) conceptualization of drawdown at preconsolidation stress does not appear to be consistent with observed changes in water level and compaction.
 - Observations by Gabrysch (1982) indicated that water-level declines in the deep Evangeline Aquifer did not result in appreciable compaction.
 - Observations at the Lake Houston extensometer site indicate there is no discernable compaction of units below the Evangeline Aquifer despite about 150 feet of water level decline in the Jasper Aquifer.
 - Preconsolidation head may be below observed water-level declines in the Jasper or the drawdown at preconsolidation stress is greater than conceptualized by Kelley and others (2018).
- Along with burial depth, the age and mineralogy of the sediments may affect the compressibility of the clay layers.
 - It is suspected that younger and shallower materials will compact more easily (Gabrysch, 1982).
 - Kelley and others (2018) note that clays composed of montmorillonite have the highest compressibility
 - Chemical reactions within older sediments may allow for increased cementation of the grains.
 - Burial depth increases the effective stress on the sediment grains which increases compaction of the units.

With regard to the application of the work by Kelley and others (2018) to the Jasper Aquifer in Montgomery County it is important to remember that the data they used are from more than 20 miles away and are not from the Jasper Aquifer. The data used by Kelley and others (2018) are from younger sediments of the Chicot and Evangeline aquifers. Regarding their analyses, Kelley and others (2018) state that "properties controlling compaction of the brackish Jasper Aquifer should be considered uncertain."

We recommend users of the Kelley and others (2018) conceptual model of compaction in the Jasper Aquifer carefully consider the conclusions listed above. Revisions to the conceptual model based on our observations may result in less predicted compaction in Jasper Aquifer or a slower rate of compaction. While the sediments that make up the formations of the Jasper Aquifer may compact with declining water levels, it is important to appropriately conceptualize the compaction based on the observed data. While the compaction results from a numerical model will remain uncertain, we may reduce the uncertainty through consideration of the available observations.

<u>Hydrostratigraphy</u>

For decades a common approach was taken by groundwater professionals towards the delineation of water bearing units of the Gulf Coast Aquifer System in Montgomery and surrounding counties. This common approach was practical and reflected the consensus and understanding of the aquifers and groundwater flow through the system. Recently, other approaches to delineating the hydrostratigraphic units have been applied; however, practical application of the results from the approach within the GULF-2023 model were unsuccessful and required revision to allow implementation within the numerical model. For our evaluation of the local hydrostratigraphy, we applied the common approach and practical understanding of the hydrostratigraphic units of the Gulf Coast Aquifer System to develop the structural and clay thickness dataset for Montgomery County. The following provides a summary of our evaluations focused on the subsurface conditions beneath Montgomery County.

- The geology of the Gulf Coast Aquifer System is made up of a complex system of alternating layers of discontinuous sand, silt, and clay that increase with depth and thickness toward the Gulf of Mexico.
 - It can be difficult to identify the individual geologic units on geophysical logs due to the similarities of sediments within each geologic unit.
 - Historically, the sub-aquifers of the Gulf Coast Aquifer System in Montgomery County and the greater Houston area have been classified by hydrogeologic units and include from shallowest (younger) to deepest (older) the Chicot Aquifer, Evangeline Aquifer, Burkeville Confining Unit, Jasper Aquifer and the Catahoula Formation.
 - Our evaluation focused on the Chicot, Evangeline, and Jasper aquifers which are the principal aquifers for groundwater production in Montgomery County. The Catahoula was not discussed at length in this report.
- In this study the Jasper Aquifer was divided into two units based on lithology, the Upper Jasper and the Lower Jasper.
 - The upper part of the Jasper Aquifer can have relatively thick sand beds that typically contain freshwater and are capable of supporting moderate to large capacity water wells in most parts of Montgomery County.
 - The lower part of the Jasper Aquifer contains mostly interbedded sand and clay and the sands contain water with likely brackish quality.
 - At the time of this study, no wells have been completed in the brackish portion of the Jasper Aquifer.
 - It is our understanding that all registered and permitted wells with the LSGCD that are designated as the Jasper Aquifer are completed in the sands that comprise the upper part of the aquifer.
- We evaluated geophysical logs to improve the understanding of the depth, thickness, and composition of the principal aquifers within Montgomery County.
 - Elevation estimates relative to sea level were developed and mapped for the base of the Chicot, Evangeline and Upper Jasper aquifers and the Burkeville Confining Unit.
 - We applied the United States Geological Survey Source Water Assessment Program dataset (Strom and others, 2003) as the base of the Lower Jasper.

- The base of aquifer and confining unit surfaces developed as part of this study provide a reference for the approximation of the tops and bottoms of the hydrogeologic units in Montgomery County. Site specific conditions may vary from the surfaces developed using the evaluated geophysical logs.
- Young and Draper (2020) used an approach combining the chronostratigraphic and lithostratigraphic methodology to update the hydrogeologic units in support of the development of the GULF-2023 groundwater flow model.
 - The approach resulted in a generally deeper base of the Chicot Aquifer in Montgomery and surrounding counties compared to the base of Chicot Aquifer as defined in this study and previous work (Popkin, 1971; Gabrysch and Bonnet, 1974; 1976a; 1976b; Baker, Jr., 1979; Espey, Huston & Associates, Inc., 1979; Carr and others, 1985; Kasmarek and Robinson, 2004; Kasmarek, 2013).
 - The lithostratigraphic based approach to adjust the Burkeville Confining Unit elevations yielded formation picks that are generally similar to the picks defined in this study for most parts of Montgomery County.
 - While the GULF-2023 model will have hydrogeologic surfaces that are delineated differently, the hydrogeologic and subsidence parameters assigned to each model layer will likely influence the performance of the model and its ability to simulate observed aquifer conditions as much or more than the hydrogeologic surfaces developed for the model.
- Jasper production within Montgomery and northern Harris counties is almost exclusively limited to the Upper Jasper Aquifer
 - The clay layers likely affected by depressurization and potential compaction are likely much thinner than the cumulative clay thickness of the entire Jasper.
 - Comparing cumulative thickness for the Jasper Aquifer as presented by Kasmarek and Robinson (2004) with clay-interbed thicknesses from our evaluations indicates that the cumulative clay thicknesses for the Jasper are up to five times thicker than the clay interbeds within likely targeted production zones in the Upper Jasper.
- The distribution and thickness of clay layers is critical to understanding the hydraulics, mechanics, magnitude, and timing of compaction and resulting subsidence. Understanding these distributions as related to zones targeted for large-capacity pumping should be a consideration for all future studies and model parameterization. The information compiled from the log analyses and identifying clay and sand layers will be critical in planning subsequent work including planning of drilling, logging, and coring efforts.

Phase 3 Drilling and Testing

Researchers, consultants, regulatory entities, and others have referred to the work by Gabrysch and Bonnet (1974; 1976a; 1976b) for nearly 50 years when discussing the factors affecting compaction and subsidence in the Gulf Coast Aquifer System. Their work has been interpreted and applied to inform the understanding of compaction throughout the Gulf Coast Region despite being limited to a relatively small area. Adding to the body of knowledge by developing physical data related to clay compaction in an updip area of the Gulf Coast Aquifer System, and particularly in the Jasper Aquifer, will provide benefit to the scientific community for years to come and will enhance the data-driven management of groundwater resources by Lone Star Groundwater Conservation District.

To obtain this data, we recommend conducting a drilling and testing program designed to collect data that are directly applicable to understanding the subsurface compaction characteristics. We anticipate the program would involve:

- 1. Drilling a test hole to obtain lithologic samples and geophysical logs then completing a waterlevel monitoring well
- 2. Adjacent to the test hole, drilling to collect core samples of selected clay layers then completing a second water-level monitoring well

One immediate benefit of the program would be dedicated water-level monitoring wells (screened at different intervals) for potential collection of continuous data. Lab analysis of core samples collected from each hole would provide mineralogical, compressibility, porosity, and permeability data. These collected data would then inform the conceptual understanding of potential compaction within the groundwater production intervals and guide management of the resources by the District.

To begin collection of the data, we recommend drilling and testing at six locations spread across Montgomery County. We recommend the first location be at the Lone Star Groundwater Conservation District property if space is available. This location could provide the District with the demonstration of on-site data collection and could be used for long-term educational opportunities. For all six of the proposed locations, our recommended priority for drilling and testing locations is:

- 1. Lone Star Groundwater Conservation District
- 2. Woodlands Area
- 3. Magnolia Area
- 4. Southeast Area
- 5. Splendora Area
- 6. Montgomery Area

REFERENCES

- American Geological Institute, 1976, Dictionary of Geological Terms: Revised Edition: Garden City, New York, Anchor Press/Doubleday, 472 p.
- Arbab, B., Jahani, D., and Movahed, B., 2017, Reservoir Characterization and Pore Type Systems of Carbonate Low Resistivity Pay in Persian Gulf: Open Journal of Geology, v. 7, p. 859-870.
- Baker, Jr., E.T., 1979, Stratigraphic and hydrogeologic framework of part of the Coastal Plain of Texas: Texas Department of Water Resources Report 236, 43 p.
- Baker, Jr., E.T., 1986, Hydrology of the Jasper Aquifer in the Southeast Texas Coastal Plain: Texas Water Development Board Report 295, 65 p.
- Bear, J., 1979, Hydraulics of Groundwater: Mineola, New York, Dover Publications, Inc., 569 p.
- Bureau of Economic Geology, 2014, Geologic Atlas of Texas: Digital map,
- Carr, J.E., Meyer, W.R., Sandeen, W.M., and McLane, I.R., 1985, Digital models for simulation of ground-water hydrology of the Chicot and Evangeline aquifers along the Gulf Coast of Texas: Texas Department of Water Resources Report 289, 101 p.
- Espey, Huston & Associates, Inc., 1979, Houston-Galveston Coastal Subsidence District Water Resource Management Program Phase I: Prepared for the Harris-Galveston Coastal Subsidence District, unk. p.
- Fetter, C.W., 1994, Applied Hydrogeology: (Third Edition) Upper Saddle River, New Jersey, Prentice Hall, 691 p.
- Gabrysch, R.K., 1982, Ground-water withdrawals and land-surface subsidence in the Houston-Galveston Region, Texas, 1906-80: U. S. Geological Survey Open-File Report 82-571, 68 p.
- Gabrysch, R.K. and Bonnet, C.W., 1974, Land-Surface Subsidence in the Area of Burnett, Scott, and Crystal Bays Near Baytown, Texas: U.S. Geological Survey Water-Resources Investigations Report 74-21, 48 p.
- Gabrysch, R.K. and Bonnet, C.W., 1976a, Land-surface subsidence at Seabrook, Texas: U.S. Geological Survey Water Resources Investigation, 53 p.
- Gabrysch, R.K. and Bonnet, C.W., 1976b, Land-surface subsidence in the area of Moses Lake near Texas City, Texas: U.S. Geological Survey Water-Resources Investigation 76-32, 42 p.
- Hoffman, J., Leake, S.A., Galloway, D.L., and Wilson, A.M., 2003, MODFLOW-2000 Ground-Water Model—User Guide to the Subsidence and Aquifer-System Compaction (SUB) Package: U.S. Geological Survey, Open-File Report 03—233, 46 p.
- Jorgensen, D.G., 1975, Analog-Model Studies of Ground-Water Hydrogeology in the Houston District, Texas: Texas Water Development Board Report 190, 84 p.
- Kasmarek, M.C., 2013, Hydrogeology and Simulation of Groundwater Flow and Land-Surface Subsidence in the Northern Part of the Gulf Coast Aquifer System, Texas, 1891-2009: U.S. Geological Survey Scientific Investigations Report 2012-5154, 55 p.

- Kasmarek, M.C. and Robinson, J.L., 2004, Hydrogeology and Simulation of Ground-Water Flow and Land-Surface Subsidence in the Northern Part of the Gulf Coast Aquifer System, Texas: U.S. Geological Survey Scientific Investigations Report 2004-5102, 111 p.
- Keester, M., Thornhill, M., Beach, J., and Drabek, C., 2021, Evaluation of the Correlation between Land-Surface Movement, Water-Level Change, and Groundwater Production in Montgomery County: Report prepared for the Lone Star Groundwater Conservation District, 42 p.
- Kell, G.S., 1975, Density, Thermal Expansivity, and Compressibility of Liquid Water from 0° to 150°C: Correlations and Tables for Atmospheric Pressure and Saturation Reviewed and Expressed on 1968 Temperature Scale: Journal of Chemical and Engineering Data, v. 20, no. 1, p. 97-105.
- Kelley, V., Deeds, N., Young, S.C., Pinkard, J., Sheng, Z., Seifert, J., and Marr, S., 2018, Subsidence Risk Assessment and Regulatory Considerations for the Brackish Jasper Aquifer - Harris-Galveston and Fort Bend Subsidence Districts: Report prepared for Harris-Galveston Subsidence District and Fort Bend Subsidence District, 69 p.
- LBG-Guyton Associates, 2016, Technical Memorandum Regarding Total Estimated Recoverable Storage and Implications for Groundwater Management: Prepared for Task 2 of the Lone Star Groundwater Conservation District Strategic Water Resources Planning Study, 31 p.
- Leake, S.A. and Galloway, D.L., 2007, MODFLOW Ground-Water Model—User Guide to the Subsidence and Aquifer-System Compaction Package (SUB-WT) for Water-Table Aquifers: U.S. Geological Survey, Techniques and Methods 6–A23, 42 p.
- Leake, S.A. and Prudic, D.E., 1991, Documentation of a Computer Program to Simulate Aquifer-System Compaction Using the Modular Finite-Difference Ground-Water Flow Model: U.S. Geological Survey, Techniques of Water-Resources Investigations 06-A2, 68 p.
- Long, C., 2020, Texas State Historical Association Handbook of Texas, https://www.tshaonline.org/handbook/entries/montgomery-county, accessed November 2021.
- Meade, R.H., 1964, Removal of water and rearrangement of particles during the compaction of the clayey sediments: U.S. Geological Survey Professional Paper 497-B, 23 p.
- Popkin, B.P., 1971, Ground-Water Resources of Montgomery County, Texas: TWDB Report No. 136, 143 p.
- Prozorovich, E.A., 1964, Factors determining compaction in sedimentary rocks: International Geology Review, v. 6, no. 3, p. 405-419.
- Puttiwongrak, A., Nufus, S., Bunprasert, C., Giao, P.H., Vann, S., Suteerasak, T., and Sasaki, N., 2021, mpaction Model for Shale in Differences of Geological Ages Using A 3D Empirical Relationship in Northeastern Thailand: Preprints, no. 2021040589, p. 1-10.
- Railroad Commission of Texas, 2021, Data Sets Available for Download, https://www.rrc.state.tx.us/resource-center/research/data-sets-available-for-download/, accessed September 2021.
- Ramage, J.K. and Shah, S.D., 2019, Cumulative Compaction of Subsurface Sediments in the Chicot and Evangeline Aquifers in the Houston-Galveston Region, Texas (ver. 2.0, June 2020), https://www.sciencebase.gov/catalog/item/5cd30a76e4b09b8c0b7a5cb3, accessed March 2020.

- Strom, E.W., Houston, N.A., and A., G.C., 2003, August Selected Hydrogeologic Datasets for the Jasper aquifer, Texas: Open-File Report 03-299.
- Terzaghi, K., 1925, Erdbaumechanik auf bodenphysikalisher Grundlage: Vienna, Austria, Deuticke, 399 p.
- Texas Commission on Environmental Quality, 2021, Water Well Report Viewer, https://www.tceq.texas.gov/gis/waterwellview.html, accessed November 2021.
- Texas Water Development Board, 2021a, Groundwater Data Viewer: BRACS Database, https://www3.twdb.texas.gov/apps/WaterDataInteractive/GroundWaterDataViewer, accessed November 2021.
- Texas Water Development Board, 2021b, Groundwater Database Reports, http://www.twdb.texas.gov/groundwater/data/gwdbrpt.asp, accessed July 2021.
- Thornhill, M.R. and Keester, M.R., 2020, Subsidence Investigations Phase 1 Assessment of Past and Current Investigations: Report prepared for the Lone Star Groundwater Conservation District, 35 p.
- Tiab, D. and Donaldson, E.C., 2016, Effect of Stress on Reservoir Rock Properties (Chapter 9) in Petrophysics - Theory and Practice of Measuring Reservoir Rock and Fluid Transport Properties: (4th) New York, Elsevier, 483-582 p.
- Turner Collie & Braden, Inc., 2004, Groundwater Resources Management Information Report: Prepared for the Lone Star Groundwater Conservation District, 61 p.
- United States Geological Survey, 2021a, National Water information System Web Interface Groundwater Levels for Texas, https://nwis.waterdata.usgs.gov/tx/nwis/gwlevels/, accessed November 2021.
- United States Geological Survey, 2021b, Provisionsal 2021 Water Level Altitude Data for Montgomery and Harris Counties: Provisional data provided to LSGCD,
- Vista Clara, Inc., 2022, Magnetic Resonance Borehole Logging Tools, https://www.vistaclara.com/borehole-logging-solutions/, accessed April 2022.
- Walton, C.W., 1987, Groundwater Pumping Tests Design & Analysis: Boca Raton, CRC Press, 216 p.
- Wilson, J.A., 1962, Tertiary Formations between Austin and Houston with Special Emphasis on the Miocene and Pliocene: Field Excursions No. 10 The University of Texas at Austin, 12 p.
- Young, S.C. and Draper, C., 2020, The Delineation of the Burkeville Confining Unit and the Base of the Chicot Aquifer to Support the Development of the Gulf 2023 Groundwater Model: Prepared for Harris-Galveston Subsidence District and Fort Bend Subsidence District, 27 p.
- Young, S.C., Ewing, T., Hamlin, S., Baker, E., and Lupton, D., 2012, Final Report Updating the Hydrogeologic Framework for the Northern Portion of the Gulf Coast Aquifer: Contract report for the Texas Water Development Board, 285 p.
- Young, S.C., Jigmond, M., Deeds, N., Blainey, J., Ewing, T.E., Banerj, D., Piemonti, D., Jones, T., Griffith, C., Lupton, D., et al., 2016, FINAL REPORT: Identification of Potential Brackish

Groundwater Production Areas – Gulf Coast Aquifer System: Contract report to the Texas Water Development Board, 636 p.

Young, S.C., Kelley, V., Deeds, N., Knox, P., Budge, T., Baker, E., Galloway, B., and Dutton, A., 2006, A Site Conceptual Model to Support the Development of a Detailed Groundwater Model for Colorado, Wharton, and Matagorda Counties: Prepared for LCRA, 304 p.

Yuen,S.T.S.,n.d.,CompressibilityandSettlement,https://people.eng.unimelb.edu.au/stsy/geomechanics_text/Ch9_Settlement.pdf,accessedNovemeber 2021.
APPENDIX 1 – GEOPHYSICAL LOG DATA

Geophysical	API Number					Land Surface	Base of	Base of	Base of Burkeville	Base of	Base of Chicot	Base of	Base of	Base of	SWAP Base of
Log	State Well Number					Elevation	Denth	Denth	Denth	Denth	Elevation	Evalgenie	Elevation	Elevation	Elevation
Number	and / or O Number	Company	Well	Latitude	Longitude	(feet)	(feet, bls)	(feet, bls)	(feet, bls)	(feet, bls)	(feet, rsl)	(feet, rsl)	(feet, rsl)	(feet, rsl)	(feet, rsl)
Mo-1	4233901886	THE PURE OIL CO. & W.T. MORAN CORP.	CENTRAL COAL & COKE 3	30.5159	-95.6830	191				445		(***)		-254	-507
Mo-2	4233900966	RED BANK OIL CO.	CENTRAL COAL & COKE	30.4727	-95.6947	334		220	280	550		114	54	-216	-665
Mo-3	Q-41 / 6036403	STRUM & WOMACK	FOSTER #2	30.4441	-95.6180	191			335	610		66	-144	-419	-905
Mo-4	4233901799	E.L. KURTH TRUSTEE	SOUTHLAND PAPER MILLS 4	30.2492	-95.2027	123	390	1,005	1,260	1,825	-267	-882	-1,137	-1,702	-2,320
Mo-5	Q-197 / 6036304	C.W. CHICK HANSLIP	CRAWFORD #1	30.4756	-95.5294	290			538	730			-248	-440	-927
Mo-6	4233900868	SUPERIOR OIL CO AND CARLTON L. SPEED JR.	JAMES SYKES B 1	30.4477	-95.5122	284		360	510	820		-76	-226	-536	-1,059
Mo-7	4233900980 / 6044101	T. J. WOOD	FULTZ #1	30.3682	-95.5885	210				860				-650	-1,249
Mo-8	4233900979 / 6043304	F. A. CALLERY	WEISINGER 1	30.3707	-95.6197	264		330	500	860		-66	-236	-596	-1,197
Mo-9	4233930630	CYPRESS ENERGY DEV.	HARPER B. / 1	30.1842	-95.4035	117		910	1,190	1,730		-793	-1,073	-1,613	-2,149
Mo-10	4233901142	STABLE OIL CO.	JOLKE #1	30.1260	-95.6601	167		900	1,190	1,580		-733	-1,023	-1,413	-1,970
Mo-11	4233930951	WHITING PETROLEUM CORPORATION	RHODES, W.S. 1801A	30.2653	-95.3500	159	280	810	1,090		-121	-651	-931		-1,969
Mo-12	4233901930	HUMBLE OIL AND REFINING CO	KATHRYN M. HINES 1	30.2161	-95.3030	124	400	995	1,280	1,835	-276	-871	-1,156	-1,711	-2,224
Mo-13	4233900901	SUNRAY - MIDCONTINENNT OIL CO.	MARGARET SYKES #1	30.3985	-95.5042	339		580	790	1,025	126	-241	-451	-686	-1,253
Mo-14	Q-152	HUMBLE OIL REFINING CO.	SO TEX DEV CO 80-A	30.2822	-95.4048	210	290	745			-80	-535			-1,810
Mo-15	4233900032	J. A. GRAY	FOSTER LBR. CO. #1	30.2905	-95.2032	123		910	1,110	1,520	-135	-787	-987	-1,397	-2,185
Mo-16	4233900097	OHIO OIL CO.	ANDERSON #1	30.3525	-95.4961	203	180	510	780	1,200	23	-307	-577	-997	-1,428
Mo-17	4233900101	COX & CAL-MON OIL CO.	FOSTER #2	30.3413	-95.4872	235		600	810	1,320	-5	-365	-575	-1,085	-1,478
Mo-18	4233900045	PHILLIPS PETR. CO.	FRASER #1	30.4613	-95.3718	345	165	550	765	1,070	180	-205	-420	-725	-1,269
Mo-19	4233900013	AMERADA PETR. CO.	FOSTER LUMBER CO. #1	30.3187	-95.1627	155	305	950	1,150	1,480	-150	-795	-995	-1,325	-2,180
Mo-20	4233900082 / 6037803	MORRIS K. WOMACK	HUNT #1	30.3925	-95.4337	265			815	1,220	87		-550	-955	-1,386
Mo-21	4233900079	MORRIS K. WOMACK ETAL	HUTCHINGS SEALY NBT #1	30.3742	-95.3940	253		585	825	1,250	(HH)	-332	-572	-997	-1,520
Mo-22	4233900504	CURTIS HANKAMER	FORMAN #1	30.3001	-95.2780	165		830	1,100	1,540	-110	-665	-935	-1,375	-1,997
Mo-23	4233900502	W. F. NEWTON	MARSH - RICE UNIVERSITY #1	30.3310	-95.3120	208			962	1,440	-64	-652	-754	-1,232	-1,826
Mo-24	4233900056	MCCRAY G. / 1	COPANO TRANS	30.4768	-95.4349	272				850				-578	-1,087
Mo-25	4233901713	STANDARD OIL OF TEXAS	DOROTHY ANDERSON 1	30.1707	-95.2957	120	350	1,120	1,360	1,880	-230	-1,000	-1,240	-1,760	-2,388
Mo-26	4233900059	SPILLER J.B. / 1	KINSALA & NEWTON	30.4715	-95.4897	330				860				-530	-1,009
Mo-27	4233900066	ROSE K.G. / 1	THE MORAN CORP.	30.4067	-95.4056	244			780	1,200		: :	-536	-956	-1,388
Mo-28	Q-44 / 6043101	O. C. GARVEY AND TODD	MARTIN #1	30.3649	-95.7250	261			535	760			-274	-499	-1,094
Mo-29	4233900993	F. A. CALLERY	MARY LENA CASTLE #1	30.3519	-95.6911	393		425	700	1,010		-32	-307	-617	-1,185
Mo-30	Q-362	FISH OIL AND GAS CO.	BERKLEY & HOGG #1	30.3158	-95.5663	231		600	850	1,170		-369	-619	-939	-1,476
Mo-31	4233930484	SOUTHLAND ROYALTY COMPANY	GEORGE MITCHELL #1	30.2799	-95.6954	183		620	840	1,160		-437	-657	-977	-1,463
Mo-32	4233901881	HUMBLE OIL & REFINING CO.	J. W. LEWIS ET AL #1	30.1743	-95.7328	261	220	920	1,190	1,580	41	-659	-929	-1,319	-1,753
Mo-33	4233901102	MITCHELL & MITCHELL	NEIDRAL #1	30.1399	-95.6155	149		900	1,180	1,580		-751	-1,031	-1,431	-1,982
Mo-34	4233901046	THE GRAY WOLFE CO	PAN-AM 3	30.2131	-95.6788	249	190	885	1,180		59	-636	-931		-1,/12
Mo-35	Q-22276053105	BASSETT'S. WINMILL	F.M. YOSTETAL	30.2190	-95.4792	185		890	1,140	1,650		-705	-955	-1,465	-1,916
Mo-36	4233901420	COFFEE C W	LATZER-LAYTON UNIT I	30.1271	-95.4482	134		1,020	1,370	1,820		-886	-1,236	-1,686	-2,251
Mo-37	4233901846	F. S. CROCKETT	BUCK WILLIAMS #1	30.1834	-95.1941	107		1,180	1,538	2,100	-333	-1,073	-1,431	-1,993	-2,553
Mo-38	4233900162	HUMBLE OIL AND REFINING CO	O. C. COX I	30.3043	-95.4794	179	220	690	1,025	1,450	-41	-511	-846	-1,271	-1,607
Mo-39	4233900199	HUMBLE OIL AND RRG. CO	B. D. GRIFFIN B-1	30.2848	-95.4895	160	240	760	1,020	1,470	-80	-600	-860	-1,310	-1,655
Mo-40	4233930558	INDEPENDENT EXPL.	MCCLAIN / I	30.2021	-95.1622	105		1,140	1,600	2,130		-1,035	-1,495	-2,025	-2,559
Mo-41	4233930072	GLENN H. MCCARTHY	SAUNDERS GREGG ET AL I	30.2906	-95.7842	318		670	940	1,275		-352	-622	-957	-1,352
Mo-42	4233901732	W. O. HEINZE	BENDER #1	30.0586	-95.2960	/8		1,450	1,920	2,415	-372	-1,372	-1,842	-2,337	-2,/48
Mo-43	4233901014	STANOLIND OIL AND GAS CO	H. C. NICHOLS I	30.1317	-95.7511	229	240	880	1,170	1,680	-11	-651	-941	-1,451	-1,846
Mo-44	4233901739	MOBIL OIL COMPANY	BENDER ESTATE FARM I	30.1065	-95.3535	100	390	1,220	1,630	2,060	-290	-1,120	-1,530	-1,960	-2,486
Mo-45	4233930521	ALLIED PRODUCTION CORP.	JOHN BIRCH	30.1137	-95./3/4	219	230	880	1,220	1,640	-11	-661	-1,001	-1,421	-1,909
Mo-46	4233901079	COASI CO	PITTS AND LYLES I	30.1351	-95.6901	216	240	930	1,230	1,685	-24	-/14	-1,014	-1,469	-1,910
Mo-47	4233901728	D B OIL COMPANY	CLEVELAND W D/1	30.0448	-95.2575	104	460	1,500	1,970	2,450	-356	-1,396	-1,866	-2,346	-2,868
Mo-48	4233901109	MUBIL OIL CORPORATION	INA ARCENAUX I	30.2228	-95.5462	194	340	900	1,170	1,630	-146	-706	-976	-1,436	-1,824
Mo-49	4233930003	THE MORAN CORPATION COLUMBIA DRILLING CO.	M AND M MINEKALS 1	30.2024	-95.5583	187	320	895	1,190	1,670	-133	- /08	-1,003	-1,483	-1,876
Mo-50	4233901954	CYPKUS OIL COMPANY	CHASE MANHATTAN 4	30.1877	-95.5394	173	325	1,015	1,260	1,680	-152	-842	-1,087	-1,507	-1,943
Mo-51	4233901879	ASSOCIATED OIL AND GAS COMPANY	BLANCHE FOLEY EST 1	30.1835	-95.4949	165		1,035	1,250	1,/30	-145	-870	-1,085	-1,565	-2,012
Mo-52	4255901721	WHIFFEN ESTATES INC.	C. A. WHITE #I	30.1719	-95.3650	100		1,035	1,250	1,810		-935	-1,150	-1,/10	-2,256
M0-53	4253901779	WILLEY CUKP.	WILEY #1	30.1337	-95.4575	121		930	1,320	1,/50		-809	-1,199	-1,629	-2,216
Mo-54	4233901718	HUMBLE OIL & REFINING CO.	W. M. WICKIZER	30.1471	-95.2921	120		1,200	1,550	2,040	-311	-1,080	-1,430	-1,920	-2,474
Mo-55	4233901743	CORLEY & GEISELMAN	HARVEY P. / 1	30.1156	-95.4337	105		1,020	1,310	1,820	· •••	-915	-1,205	-1,715	-2,309
Mo-56	4.2339E+13	FLEMMING #1	DAVID B. MACDANIEL	30.1128	-95.7983	243		890	1,265	1,670		-64/	-1,022	-1,427	-1,841
M0-57	4255900202	HUMBLE OIL AND REFINING	JORAND LAKE GAS UNIT 2 WELL 1	30.2875	-95.4508	169	220	/20	1,010	1,495	-51	-551	-841	-1,326	-1,/06

Combusied	A DI Namelan					Land	Base of	Base of	Base of	Base of	Base of	Base of	Base of	Base of	SWAP Base of
Geophysical	API Number, State Well Number					Surface	Donth	Evangeline	Burkeville	Upper Jasper	Chicot	Evangeline	Burkeville	Upper Jasper	Jasper
Number	and / or O Number	Company	Well	Latitudo	Longitude	(feet)	(feet bls)	(feet bls)	(feet bls)	(feet bls)	(feet rsl)	(feet rsl)	(feet rsl)	(feet rsl)	(feet rsl)
rumber	and / of Q Pumber	Company	Weil	Latitude	Longitude	(icci)	(1001, 013)	(1001, 013)	(icci, bis)	(1001, 015)	(1001, 131)	(1001, 131)	(1001, 131)	(icct, i si)	(100, 131)
Mo-58	4233901039	ACCO-ROBERTS & MURPHY COMPANY	M ROBERTS ESTATE / 1	30.2143	-95.6370	220		840	1,140	1,530		-620	-920	-1.310	-1,764
Mo-59	4233901887	SOCONY MOBIL OIL COMPANY	SEALY-SMITH FOUNDATION / 1	30.3282	-95.6204	227		530	750	1,060		-303	-523	-833	-1,365
Mo-60	4233930199	LADD PET. CORP.	SEALY & SMITH FDTN. / 2	30.2711	-95.6073	195		780	1,030	1,400		-585	-835	-1,205	-1,600
Mo-61	4233901734	JACK W. FRAZIER	BENDER #1	30.1029	-95.3838	104		1,180	1,450	1,960	-282	-1,076	-1,346	-1,856	-2,439
Mo-62	4233930730	FIRST MATAGORDA CORP	BENDER ESTATES A-2	30.1339	-95.4274	112	360	1,095	1,340	1,850	-248	-983	-1,228	-1,738	-2,267
Mo-63	4233900902	B. B. BURKE	FERGERSON #1	30.3805	-95.5057	307		550	790	1,150	100	-243	-483	-843	-1,315
Mo-64	4233900934	HUMBLE O&R CO.	HUMBLE O&R CO.	30.2857	-95.5367	167	190	775	1,010	1,370	-23	-608	-843	-1,203	-1,613
Mo-65	4233901849	ATLANTIC REFINING COMPANY	FOSTER LBR. CO 1	30.1799	-95.1533	105	340	1,180	1,660	2,180	-235	-1,075	-1,555	-2,075	-2,650
Mo-66	4233901113	DAVID L. GORDON	MCMAHAN H.M. / 1	30.2372	-95.5209	182		880	1,120	1,610		-698	-938	-1,428	-1,802
Mo-67	4233901105	D.L. GORDON TRUST	D.L. GORDON TRUST	30.2334	-95.5288	190		880	1,130	1,610		-690	-940	-1,420	-1,808
Mo-68	4233930494	AIKMAN PETROLEUM INC	AIKMAN PETROLEUM INC	30.1983	-95.5812	216	310	930	1,220	1,620	-94	-714	-1,004	-1,404	-1,864
Mo-69	4233930097	BINTLIFF DAVID C	BINTLIFF DAVID C	30.1569	-95.5709	160		915	1,160	1,680		-755	-1,000	-1,520	-1,991
Mo-70	4233901101	SIMONTON & TALLEY	SIMONTON & TALLEY	30.1575	-95.5924	162		910	1,180	1,640		-748	-1,018	-1,478	-1,963
Mo-71	6062604	LAYNE TEXAS COMPANY	KINGWOOD PLACE #1	30.0706	-95.2620	85	410	1,450	- 22-1		-325	-1,365		22	-2,779
Mo-72	4233900154	HUMBLE OIL AND REFINING COMPANY	CONROE TOWNSITE OIL UNIT 97 1	30.3070	-95.4602	209	218	695	1,010	1,470	-9	-486	-801	-1,261	-1,629
Mo-73	4233900742 / 6046504	HUMBLE OIL & REFINING CO.	MARY A. EMORY #5	30.2921	-95.3369	164	275	855	1,080	1,540	-111	-691	-916	-1,376	-1,903
Mo-74	4233901423	C.W. COFFEY ETAL	BALDWIN BROS #1	30.1540	-95.4586	145		980	1,250	1,760	-250	-835	-1,105	-1,615	-2,156
Mo-75	4233901872	TEXACO INCOROATED	B.D. GRIFFIN 1	30.3165	-95.2964	194	280	870	1,070	1,440	-86	-676	-876	-1,246	-1,907
Mo-76	4233901801	E. L. KURTH AND S. W. HENDERSON JR.	SOUTHLAND PAPER MILLS 8	30.2336	-95.2202	119	390	990	1,315	1,830	-271	-871	-1,196	-1,711	-2,333
Mo-77	4233900019	AMERADA PETROLEUM CORPORATION	H. A. GODEJOHN 1	30.2901	-95.1502	155	360	995	1,170	1,550	-205	-840	-1,015	-1,395	-2,297
Mo-78	4233901604 / 6054302	ATLANTIC REFG. CO	SO. TEX. DEVELOPMENT 1	30.2358	-95.2777	130	340	990	1,260	1,830	-210	-860	-1,130	-1,700	-2,207
Wa-1	Q-50	M. H. MARR AND THE MORAN CORRPORATION	KATIE WARD NO 1	30.6477	-95.6329	345				190	(<u>22</u>)			155	-122
Wa-2	4247130016	MORAN CORPORATION, THE	CENTRAL COAL AND COKE 9	30.5698	-95.6318	211				390				-179	-394
Wa-3	4247130010	THE MORAN CORP.	CENTRAL COAL & COKE A-2	30.5419	-95.5653	352		220	322	564	, -	132	30	-212	-617
Wa-4	4247100046	R.W. RAMEY AND TEXMO OIL CO.	TOMY KMEICIK 1	30.5287	-95.4799	349		300	370	630	- 44	49	-21	-281	-818
Wa-5	4247130232 / Q-91	GETTY OIL CO	T.W. KEELAND 1	30.5484	-95.3592	353			325	770			28	-417	-990
Wa-6	4247130011	PLACID OIL COMPANY	GIBBS BROS. #2	30.6492	-95.3718	340				240				100	-623
Gr-1	4218530369	ARCO EXPLORATION	CHARLIE ASHORN 1	30.5465	-95.8792	359				190				169	8
Gr-2	4218530009	LONE STAR PRODUCING CO	GOFORTH 1	30.2681	-95.8569	317	120	700	975	1,260	197	-383	-658	-943	-1,392
Gr-3	4218530028	VICTORY PETROLEUM CO.	WILLIAM BLEVINS #1	30.4756	-95.8801	375				370			-999	5	-317
Gr-4	4218500117	ATLANTIC REFINING CO	E. R. SANDERS 1	30.2695	-95.9437	324		610	860	1,040		-286	-536	-716	-1,162
Gr-5	4218530056	CHARLES B. MARINO	COWAN-ZOLLMAN 1-6	30.2488	-95.8310	306		730	1,090	1,350		-424	-784	-1,044	-1,467
SJ-1	4240700031	MIDLAND PRODUCTION CORP AND WOLF'S HEAD	HILL ESTATE 1	30.5096	-95.2884	376		535	750	1,010	(44)	-159	-374	-634	-1,283
SJ-2	4240730059	GLEN ROSE CORP	CENTRAL COAL AND COKE C-1	30.5985	-95.2685	312			-	830				-518	-1,010
SJ-3	4240730086	HOUSTON PETROLEUM CO	BROWDER-SCOTT UNIT 1	30.5338	-95.3049	273		350	455	820		-77	-182	-547	-1,160
SJ-4	4240730453	HOUSTON PETROLEUM COMPANY	U.S.A. 1	30.5140	-95.1913	254				865				-611	-1,483
SJ-5	4240730017	CONTINENTAL OIL CO	GIBBS BROTHERS AND COMPANY 1	30.4784	-95.2597	266	95	545	715	995	171	-279	-449	-729	-1,461
SJ-6	4240730018	CONTINENTAL OIL COMPANY	DRUCILLA MAYS, ET AL #1	30.4331	-95.2394	235		600	800	1,090		-365	-565	-855	-1,665
SJ-7	4240700271	ATLANTIC REFINING CO	R. L. WHITE 1	30.3626	-95.1519	180	255	750	1,010	1,370	-75	-570	-830	-1,190	-2,066
SJ-8	4240700214	AMERADA PETR. CORP AND MID-STATES OIL CORP.	CENTRAL COAL COKE CORP 1	30.3930	-95.1444	151	175	670	900	1,180	-24	-519	-749	-1,029	-1,988
SJ-9	4240700246 / Q-8	MAGNOLIA PETROLEUM COMPANY	HINCHLIFF-SIMS #1	30.4257	-95.1002	187	200	630	900	1,160	-13	-443	-713	-973	-1,962
SJ-10	4240700156 / Q-130	AMERADA PET. CO	FOSTER LBR. CO A-1	30.4572	-95.1749	253	210	560	770	1,012	43	-307	-517	-759	-1,780
L-1	42229105456	WILSON - BROACH CO.	C. M. HIGHTOWER #1	30.3517	-95.0232	156	315	840	1,185	1,460	-159	-684	-1,029	-1,304	-2,349
L-2	4229100008	MILES PRODUCTION CO	HINCHLIFF MRS M P / 1	30.3780	-95.0643	214		810	1,030	1,360		-596	-816	-1,146	-2,183
L-3	4229105018	HUMBLE OIL AND REFINING COMPANY	B. E. QUINN B-1	30.2592	-95.0455	123	370	1,040	1,310	1,680	-247	-917	-1,187	-1,557	-2,622
L-4	4229131549	GUARDIAN OIL COMPANY	FRIENDSWOOD 1	30.2073	-95.0648	130		1,200	1,650	1,970		-1,070	-1,520	-1,840	-2,754
L-5	4229102431	ACORN OIL CO.	C.C. BERRY 1	30.2259	-94.9641	115		1,260	1,710	2,025	0	-1,145	-1,595	-1,910	-2,909
L-6	4229102483	THE TEXAS CO.	R.B. BALDWIN C-4	30.1114	-94.9689	82	450		2,040	2,490	-368		-1,958	-2,408	-3,279
L-7	4229132387	ANSCHUTZ EXPLORATION CORPORATION	STORSSER FARMS INC. #1	30.1110	-95.0113	80	420	1,640	2,065	2,510	-340	-1,560	-1,985	-2,430	-3,185
L-8	4229130349	ANDERSON T G	BALDWIN EST / 1	30.2175	-95.0983	89		1,120	1,510	1,875		-1,031	-1,421	-1,786	-2,647
L-9	4229105450	CENTAUR PETR CORP	M R SCOTT ETAL 1 /1	30.1399	-94.9297	97		1,755	2,400	2,590		-1,658	-2,303	-2,493	-3,284
Wal-1	4247330066	STARR OIL & GAS CO.	WILLIAM M. RICE INSTITUTE	30.2147	-95.8099	280		790	1,110	1,420		-510	-830	-1,140	-1,569
Wal-2	4247330379	HIGH CHAPPARAL OIL COMPANY	COWAN-ZOLLMAN-HIGH CHAPPAR	30.2390	-95.8554	290		740	1,080	1,330	22	-450	-790	-1,040	-1,473
Wal-3	4247300029	C. W. WEAVER	STEGER #1	30.1635	-95.9410	300		910	1,100	1,480	77	-610	-800	-1,180	-1,522
Wal-4	4247300037	STARR OIL & GAS COMPANY	WILLIAM M. RICE INSTITUTE / 1	30.1977	-95.8802	283		785	1,140	1,460		-502	-857	-1,177	-1,523
H-1	4220107892	AL A. BROWN	W. P. THOMPSON #1	30.0789	-95.8848	245		1,010	1,360	1,800	9	-765	-1,115	-1,555	-1,816
H-2	4220101024	J. M. FLAITZ & R. B. MITCHELL	HAMILTON ESTATE / 1	30.0740	-95.1367	59		1,480	2,020	2,510		-1,421	-1,961	-2,451	-3,027

Geophysical	API Number,					Land Surface	Base of Chicot	Base of Evangeline	Base of Burkeville	Base of Upper Jasper	Base of Chicot	Base of Evangeline	Base of Burkeville	Base of Upper Jasper	SWAP Base of Jasper
Log	State Well Number	Commonly	Wall	Latituda	Langituda	Elevation	Depth (feet blo)	Depth (feat bla)	Depth (feet ble)	Depth (foot blo)	Elevation	Elevation	Elevation	Elevation	Elevation
Number	and / or Q Number	Company	wen	Latitude	Longitude	(leet)	(leet, bis)	(leet, bis)	(leet, bis)	(leet, bis)	(leet, rsi)	(leet, rsi)	(leet, rsi)	(leet, rsi)	(leet, rsi)
H-3	4220101022	S. & H. OIL & ROYALITY	W. M. ALLAUN	30.0953	-95.1241	105		1,510	1,950	2,500	-391	-1,405	-1,845	-2,395	-2,988
H-4	Q-222 / 6059503	THE TEXAS COMPANY	J.E. WILSON #1	30.0749	-95.6986	206		1,090	1,420	1,810		-884	-1,214	-1,604	-2,061
H-5	4220132375	CARNEGIE FINANCIAL CORP	J A KITZMANN 1A	29.9681	-95.6851	147	550	1,360	1,760	2,150	-403	-1,213	-1,613	-2,003	-2,375
H-6	4220100858	SLICK OIL CORPORATION	PAUL H. JACKSON 1	30.0288	-95.5628	143	480	1,190	1,485	2,030	-337	-1,047	-1,342	-1,887	-2,306
H-7	4220101017	STARR OIL & GAS COMPANY	LEANDER WALKER / 1	30.0030	-95.3174	91		1,480	1,920	2,470		-1,389	-1,829	-2,379	-2,878
H-8	4220101014	ALLDAY & TAYLOR	#1 DULANEY	30.0217	-95.3572	74		1,310	1,690	2,270	-426	-1,236	-1,616	-2,196	-2,740
H-9	4220100717	SOUTHERN UNION GAS COMPANY	WM. HOLDREITH 1	30.1500	-95.5629	135	310	990	1,190	1,645	-175	-855	-1,055	-1,510	-2,018
H-10	4220100794	R.W. RAMEY	W.T. JONES #2	30.1263	-95.5593	166	390	992	1,315	1,740	-224	-826	-1,149	-1,574	-2,083
H-11	4220100882	R. D. SIMONTON	HIEDAN 1	30.0104	-95.5402	130		1,212	1,565	2,170	-510	-1,082	-1,435	-2,040	-2,413
H-12	4220100964	FALCON SEABOARD DRILLING COMPANY	HUGO LEMM / 1	30.0529	-95.3851	104		1,230	1,608	2,080		-1,126	-1,504	-1,976	-2,589
H-13	4220131542	HAMMAN OIL & REFINING COMPANY	R. D. SMITH / 1	30.0836	-95.4293	117		1,200	1,430	1,990		-1,083	-1,313	-1,873	-2,412
H-14	4220102972	UNION PRODUCING COMPANY	DEUTSER 1	29.9615	-95.3589	70	500	1,510	2,000	2,450	-430	-1,440	-1,930	-2,380	-2,918
H-15	4220102680	TEXAS STATE DRILLING COMPANY	FLEMING 1	29.9134	-95.4005	57	510	1,690	2,150	2,340	-453	-1,633	-2,093	-2,283	-2,973
H-16	4220103001	J. BRIAN EBY	CLAUD B. HAMILL 1	29.9171	-95.3277	66	570	1,680	2,190	2,510	-504	-1,614	-2,124	-2,444	-3,116
H-17	4220132052	MARSHALL, A.B.	MARSHALL, A.B. FEE 25	29.9015	-95.2854	70	600	1,760	2,290	2,575	-530	-1,690	-2,220	-2,505	-3,254
H-18	4220102983	MCDANNALD OIL CO.	MCDANNALD FEE 1	29.9321	-95.2583	70	610	1,740	2,260	2,585	-540	-1,670	-2,190	-2,515	-3,216
H-19	4220100991	SOHIO PETROLEUM COMPANY	H. KOTHMAN / 1	30.0484	-95.4604	110		1,145	1,510	2,095		-1,035	-1,400	-1,985	-2,453
H-20	4220132489	DAN A. HUGHES COMPANY	WRIGHTSTONE UNIT / 1	30.0668	-95.5458	149		1,090	1,415	1,855	1221	-941	-1,266	-1,706	-2,234
H-21	4220107603	HUMBLE OIL AND REFINING COMPANY	FOSTER LUMBER CO 2	30.0315	-95.2249	70	475	1,540	1,950	2,500	-405	-1,470	-1,880	-2,430	-2,978
H-22	4220101032	HUMBLE OIL AND REFINING COMPANY	FOSTER LUMBER COMPANY 1	30.0388	-95.1419	52	410	1,645	1,965	2,535	-358	-1,593	-1,913	-2,483	-3,127
H-23	4220100709	GORDON STREET INC	FINGER / 1	30.0269	-95.6154	148		1,200	1,690	2,030		-1,052	-1,542	-1,882	-2,281
H-24	4220101065	PLACID OIL COMPANY	MRS. D.F. SMITH 1	30.0284	-95.0890	80	500	- 222	2,260	2,700	-420	1221	-2,180	-2,620	-3,269
H-25	4220132265	ARKLA EXPLORATION CO	THARP ESTATE 2	29.9972	-95.0856	67	500	1,800	2,310	2,715	-433	-1,733	-2,243	-2,648	-3,368
H-26	4220102720	CHARLES B. WRIGHTSMAN	HARRIS COUNTY LAND AND IMPRO	29.9548	-95.1717	59	550	1,855	2,310	2,620	-491	-1,796	-2,251	-2,561	-3,321
H-27	4220131572	DURANGO EXPLORATION	RAINES 1	30.0463	-95.9069	247		1,260	1,530	1,950		-1,013	-1,283	-1,703	-1,861
H-28	4220104295	J. F. CORLEY	WARREN RANCH / 1	29.9914	-95.8508	201		1,450	1,865	2,275		-1,249	-1,664	-2,074	-2,076
H-29	4220100476	CARNES W. WEAVER	KITZMANN / 1	30.0169	-95.7225	169		1,210	1,600	2,010		-1,041	-1,431	-1,841	-2,186
H-30	4220100090	M. E. ANDREWS & KIRBY SOUTHWORTH DRILLING	A. A. FROENAIEN #1	30.0686	-95.7228	211		1,100	1,490	1,840	-89	-889	-1,279	-1,629	-2,048
H-31	4220103517	M. P. S. PRODUCTION COMPANY	JOYCE BURG / 1	29.9972	-95.6226	143		1,270	1,765	2,140	-308	-1,127	-1,622	-1,997	-2,368
H-32	4220100809	RAMEY & MOSBACHER	PEDEN ET AL #1	30.1336	-95.5133	128		982	1,310	1,770	-252	-854	-1,182	-1,642	-2,128
H-33	422010078	HARRELL OIL COMPANY	HILDERBRANDT G. / 1	30.1164	-95.4948	112		990	1,340	1,815		-878	-1,228	-1,703	-2,203
H-34	4220130640	MCCORMICK OIL & GAS CORP.	GERALD O. NICHOLS ET AL / 1	30.0608	-95.7479	216		1,200	1,550	1,880		-984	-1,334	-1,664	-2,036

APPENDIX 2 – TYPICAL GEOPHYSICAL LOGS

	SPORTANEOUS-POTENTIAL millivolta	RESISTIVITY -ohma.m="/m	RESISTIVITY -ohme m*/m	
Мо-6	- U	tonnot infiguration	Hanna Mathanana	
Superior Oil and Speed Jr.		annantanana	<u>, we war a</u>	
James Sykes B1 Approximate Base of Chico	╏ ╶╹╎╎┼╄╷┽╆┼	┍╼┍ _{┝┶} ╻┼┨┇╦┥┼	•••• ••••	
42-339-00868 (Guit 2023 Dataset)				
	-		5	
Approximate Base of Evangeline				
(Gulf 2023 Dataset)				
Estimated Base of Evangeline		1		
Approximate Base of Burkeville (Gulf 2023 Dataset)				
Estimated Base of Burkeville				
		E		
Estimated Base of Upper Jaspe				
			S I	
	+++++2	1		
	+\$			
	4115			
		5		
Approximate Base of Jaspe				
(SWAP Dataset)			No. Con	
			35	
			E E	
			\$ 5	
		2		
			1 E	
		1		
	++++			
	-++++++++++++++++++++++++++++++++++++++		f S	
		1		
			K K	
		╡╬╞╋┽╧╋┥┥	18 81	
		K.	8	
		2		
	E	a.		
	T .	Port A		

Sector Sector	
	\$
	\$+++ > +++++\$++
	5 5 4 5
	3 <u>5</u>
	$f_{\mathcal{L}} = \mathcal{L} + \mathcal{L} + \mathcal{L}$
	£ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Approximate Base of Lower Jasper	
(Popkin 1071)	
(POPKIN 1971)	

	SPONTANEOUS-POTENTIAL millivolts	DeetHS	RESISTIVNY -ohms. m²/m	RESISTIVITY -ohms.m ^g /m
Mo-65	- +		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 AD = 18'8" 10 0 AD = 18'8" 100
Atlantic Refining Copany	2		0 AM'= 64 10 0 AM'= 64 10 0 7777777777777777777777777777777777	
Poster Lumber Company #1				
42-559-01849		-	╵ ╹┺┷╛┇┨┍┋╎┥╡	│ └╧╢╢╂╋╋╢┨╞
	S S	200	Mar Mar	
		8	Martin .	Tana
Estimated Base of Chicot		•		
		8	2	i de la
	-	8		
			1 Alexandre	
			1 Perce	Mine
		8	A CAL	x 24
		800		
		908	22 C	
		ō	A A A A A A A A A A A A A A A A A A A	
		9		
		8	5 C	
Estimated Base of Evangeline –		80	5	A CA
		130		
		°		
		90		
		ño		
		600		
Estimated Base of Burkeville –			Nation of the second se	
		700		
		900		
		1900	X	
		8		
		3		
		100		
Estimated Base of Upper Jasper-		200		
		285	1 Star	
		ő	7-	
	200	2450		
		2800		Party .
		0.44		W.LA
	X	0	8 - 5	₹ .
Approximate Base of Jasper-		2700	A A	۲. Element of the second se
(SWAP Dataset)		200		
		2.002		\$
	3			F I
	L L S	3035		
		Ser		2
		Nec		2
			1 <	Š.
		0008		
		3400		
		3500		
		2		
		600	1 21	Mark I I I I I I I I I I I I I I I I I I I
		\$750	1 5 -	
	╡┥	3800		
		N.		
		8		
		4050		Ş III
			T ZT	dim.

2	
ŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢ	
proximate base of Lower Jasper	
(opkin 1971)	
pproximate Base of Lower Jasper	

APPENDIX 3 – CLAY LAYERS SUMMARY

Appendix								
	Clay Lay	yers Summary						
	Geophy	sical log: ivio-4						
	Chicot Aquifer	Evangeline	Burkeville	Upper Jasper				
		Aquifer	Confining Layer	Aquifer				
		Total Aqui	fer Interval					
Total Interval Thickness (ft)	390	1005	1260	1826				
Total Clay Thickness (ft)	50	379	235	339				
Total Sand Thickness (ft)	340	626	1025	1487				
Percent Clay	13%	38%	19%	19%				
Percent Sand	87%	62%	81%	81%				
		Potential High Pi	roducing Interval					
Number of Producing	1	1	N/A	1				
Producing Interval Thickness	390	1005	N/A	1801				
Net Clay Thickness (ft)	50	379	N/A	214				
Net Sand Thickness (ft)	340	626	N/A	200				
Percent Clay	13%	38%	N/A	12%				
Percent Sand	87%	62%	N/A	11%				
		Clay Interbed	Characteristics					
Number of Clay Intereds	1	6	N/A	6				
Minimum Thickness (ft)	19	3	N/A	4				
Maximum Thickness (ft)	33	90	N/A	50				
Average Thickness (ft)	N/A	21						

Appendix									
	Clay Lav	yers Summary							
	Geophy	sical Log: Mo-5							
	Chicot Aquifer	Evangeline	Burkeville	Upper Jasper					
	childer Aquirer	Aquifer	Confining Layer	Aquifer					
	Total Aquifer Interval								
Total Interval Thickness (ft)	UTD	UTD	UTD	192					
Total Clay Thickness (ft)	UTD	UTD	UTD	74					
Total Sand Thickness (ft)	UTD	UTD	UTD	118					
Percent Clay	UTD	UTD	UTD	39%					
Percent Sand	UTD	UTD UTD		61%					
		Potential High P	roducing Interval						
Number of Producing Interva	UTD	UTD	UTD	1					
Producing Interval Thickness	UTD	UTD	UTD	152					
Net Clay Thickness (ft)	UTD	UTD	UTD	34					
Net Sand Thickness (ft)	UTD	UTD	UTD	118					
Percent Clay	UTD	UTD	UTD	22%					
Percent Sand	UTD	UTD	UTD	78%					
		Clay Interbed	Characteristics						
Number of Clay Intereds	UTD	UTD	UTD	4					
Minimum Thickness (ft)	UTD	UTD	UTD	2					
Maximum Thickness (ft)	UTD	UTD	UTD	14					
Average Thickness (ft)	UTD	UTD	UTD	9					

Appendix									
	Clay Lay	yers Summary							
	Geophy	sical Log: Mo-6							
	Chicot Aquifer	Evangeline	Burkeville	Upper Jasper					
	childer Aquirer	Aquifer	Confining Layer	Aquifer					
	Total Aquifer Interval								
Total Interval Thickness (ft)	UTD	UTD	150	310					
Total Clay Thickness (ft)	UTD	UTD	150	92					
Total Sand Thickness (ft)	UTD	UTD	0	218					
Percent Clay	UTD	UTD	100%	30%					
Percent Sand	UTD	UTD 0%		70%					
		Potential High P	roducing Interval						
Number of Producing Interva	UTD	UTD	N/A	1					
Producing Interval Thickness	UTD	UTD	N/A	305					
Net Clay Thickness (ft)	UTD	UTD	N/A	87					
Net Sand Thickness (ft)	UTD	UTD	N/A	218					
Percent Clay	UTD	UTD	N/A	29%					
Percent Sand	UTD	UTD	N/A	71%					
		Clay Interbed	Characteristics						
Number of Clay Intereds	UTD	UTD	N/A	3					
Minimum Thickness (ft)	UTD	UTD	N/A	10					
Maximum Thickness (ft)	UTD	UTD	N/A	50					
Average Thickness (ft)	UTD	UTD	N/A	29					

Appendix										
	Clay Lay	yers Summary								
	Geophy	sical Log: Mo-8								
	Chicot Aquifor	Evangeline	Burkeville	Upper Jasper						
	Chicot Aquiter	Aquifer	Confining Layer	Aquifer						
	Total Aquifer Interval									
Total Interval Thickness (ft)	UTD	UTD	170	360						
Total Clay Thickness (ft)	UTD	UTD	160	130						
Total Sand Thickness (ft)	UTD	UTD	10	230						
Percent Clay	UTD	UTD	94%	36%						
Percent Sand	UTD	UTD 6%		64%						
		Potential High P	roducing Interval							
Number of Producing Interva	UTD	UTD	N/A	1						
Producing Interval Thickness	UTD	UTD	N/A	335						
Net Clay Thickness (ft)	UTD	UTD	N/A	125						
Net Sand Thickness (ft)	UTD	UTD	N/A	210						
Percent Clay	UTD	UTD	N/A	37%						
Percent Sand	UTD	UTD	N/A	63%						
		Clay Interbed	Characteristics							
Number of Clay Intereds	UTD	UTD	N/A	3						
Minimum Thickness (ft)	UTD	UTD	N/A	20						
Maximum Thickness (ft)	UTD	UTD	N/A	55						
Average Thickness (ft)	UTD	UTD	N/A	42						

Appendix									
	Clay La	yers Summary							
	Geophy	sical Log: Mo-9							
	Chicot Aquifer	Evangeline	Burkeville	Upper Jasper					
	Chicot Aquiler	Aquifer	Confining Layer	Aquifer					
		Total Aqui	fer Interval						
Total Interval Thickness (ft)	UTD	270	279	535					
Total Clay Thickness (ft)	UTD	139	179	281					
Total Sand Thickness (ft)	UTD	131	100	254					
Percent Clay	UTD	51%	64%	53%					
Percent Sand	UTD	49%	36%	47%					
		Potential High Pi	roducing Interval						
Number of Producing		1	1	1					
Intervals	UID	L	T	T					
Producing Interval Thickness	UTD	270	120	535					
Net Clay Thickness (ft)	UTD	139	60	281					
Net Sand Thickness (ft)	UTD	131	60	254					
Percent Clay	UTD	51%	50%	53%					
Percent Sand	UTD	49%	50%	47%					
		Clay Interbed	Characteristics						
Number of Clay Intereds	UTD	5	3	12					
Minimum Thickness (ft)	UTD	8	9	3					
Maximum Thickness (ft)	UTD	41	90	100					
Average Thickness (ft)	UTD	28	45	20					

Appendix					
Clay Layers Summary					
	Geophys	ical Log: Mo-10			
	Chicot Aquifor	Evangeline	Burkeville	Upper Jasper	
	Chicot Aquiter	Aquifer	Confining Layer	Aquifer	
		Total Aqui	fer Interval		
Total Interval Thickness (ft)	UTD	332	287	390	
Total Clay Thickness (ft)	UTD	95	195	298	
Total Sand Thickness (ft)	UTD	237	92	92	
Percent Clay	UTD	29%	68%	76%	
Percent Sand	UTD	71%	32%	24%	
		Potential High Pi	roducing Interval		
Number of Producing	LITD	1	1	1	
Intervals	UID	1	T	T	
Producing Interval Thickness	UTD	332	247	338	
Net Clay Thickness (ft)	UTD	95	155	168	
Net Sand Thickness (ft)	UTD	237	92	170	
Percent Clay	UTD	29%	63%	50%	
Percent Sand	UTD	71%	37%	50%	
	Clay Interbed Characteristics				
Number of Clay Intereds	UTD	4	6	7	
Minimum Thickness (ft)	UTD	18	7	7	
Maximum Thickness (ft)	UTD	30	70	70	
Average Thickness (ft)	UTD	24	28	33	

Appendix						
Clay Layers Summary						
	Geophysical Log: Mo-12					
	Chicot Aquifer	Evangeline	Burkeville	Upper Jasper		
	Chicot Aquiler	Aquifer	Confining Layer	Aquifer		
		Total Aqui	fer Interval			
Total Interval Thickness (ft)	160	715	285	555		
Total Clay Thickness (ft)	70	420	245	350		
Total Sand Thickness (ft)	90	295	40	205		
Percent Clay	44%	59%	86%	63%		
Percent Sand	56%	41%	14%	37%		
		Potential High Pi	roducing Interval			
Number of Producing	1	1	NI / A	1		
Intervals	T	L	N/A	T		
Producing Interval Thickness	160	715	N/A	253		
Net Clay Thickness (ft)	70	420	N/A	53		
Net Sand Thickness (ft)	90	295	N/A	200		
Percent Clay	44%	59%	N/A	21%		
Percent Sand	56%	41%	N/A	79%		
		Clay Interbed	Characteristics			
Number of Clay Intereds	4	11	5	9		
Minimum Thickness (ft)	9	4	20	8		
Maximum Thickness (ft)	41	60	65	100		
Average Thickness (ft)	23	35	35	31		

Appendix					
Clay Layers Summary					
	Geophys	ical Log: Mo-13			
	Chicot Aquifer	Evangeline	Burkeville	Upper Jasper	
	childer Aquirer	Aquifer	Confining Layer	Aquifer	
		Total Aqui	fer Interval		
Total Interval Thickness (ft)	UTD	UTD	210	235	
Total Clay Thickness (ft)	UTD	UTD	210	77	
Total Sand Thickness (ft)	UTD	UTD	0	158	
Percent Clay	UTD	UTD	100%	33%	
Percent Sand	UTD	UTD	0%	67%	
		Potential High P	roducing Interval		
Number of Producing Interva	UTD	UTD	N/A	1	
Producing Interval Thickness	UTD	UTD	N/A	227	
Net Clay Thickness (ft)	UTD	UTD	N/A	69	
Net Sand Thickness (ft)	UTD	UTD	N/A	158	
Percent Clay	UTD	UTD	N/A	30%	
Percent Sand	UTD	UTD	N/A	70%	
		Clay Interbed	Characteristics		
Number of Clay Intereds	UTD	UTD	N/A	6	
Minimum Thickness (ft)	UTD	UTD	N/A	5	
Maximum Thickness (ft)	UTD	UTD	N/A	20	
Average Thickness (ft)	UTD	UTD	N/A	12	

Appendix					
Clay Layers Summary					
	Geophys	ical Log: Mo-16			
	Chicot Aquifer	Evangeline	Burkeville	Upper Jasper	
	chieot Aquirei	Aquifer	Confining Layer	Aquifer	
		Total Aqui	fer Interval		
Total Interval Thickness (ft)	UTD	330	270	420	
Total Clay Thickness (ft)	UTD	240	208	308	
Total Sand Thickness (ft)	UTD	90	62	112	
Percent Clay	UTD	73%	77%	73%	
Percent Sand	UTD	27%	23%	27%	
		Potential High P	roducing Interval		
Number of Producing Interva	l UTD	1	N/A	1	
Producing Interval Thickness	UTD	108	N/A	168	
Net Clay Thickness (ft)	UTD	29	N/A	83	
Net Sand Thickness (ft)	UTD	79	N/A	85	
Percent Clay	UTD	27%	N/A	49%	
Percent Sand	UTD	73%	N/A	51%	
		Clay Interbed	Characteristics		
Number of Clay Intereds	UTD	4	N/A	3	
Minimum Thickness (ft)	UTD	2	N/A	10	
Maximum Thickness (ft)	UTD	14	N/A	55	
Average Thickness (ft)	UTD	7	N/A	28	

Appendix					
Clay Layers Summary					
	Geophys	ical Log: Mo-17			
	Chicot Aquifer	Evangeline	Burkeville	Upper Jasper	
	childer Aquirer	Aquifer	Confining Layer	Aquifer	
		Total Aqui	fer Interval		
Total Interval Thickness (ft)	UTD	UTD	210	510	
Total Clay Thickness (ft)	UTD	UTD	189	184	
Total Sand Thickness (ft)	UTD	UTD	21	326	
Percent Clay	UTD	UTD	90%	36%	
Percent Sand	UTD	UTD	10%	64%	
		Potential High P	roducing Interval		
Number of Producing Interva	UTD	UTD	N/A	1	
Producing Interval Thickness	UTD	UTD	N/A	492	
Net Clay Thickness (ft)	UTD	UTD	N/A	166	
Net Sand Thickness (ft)	UTD	UTD	N/A	326	
Percent Clay	UTD	UTD	N/A	34%	
Percent Sand	UTD	UTD	N/A	66%	
		Clay Interbed	Characteristics		
Number of Clay Intereds	UTD	UTD	N/A	5	
Minimum Thickness (ft)	UTD	UTD	N/A	10	
Maximum Thickness (ft)	UTD	UTD	N/A	52	
Average Thickness (ft)	UTD	UTD	N/A	33	

Appendix					
Clay Layers Summary					
	Geophys	ical Log: Mo-18			
	Chicot Aquifer	Evangeline	Burkeville	Upper Jasper	
	childer Aquiler	Aquifer	Confining Layer	Aquifer	
		Total Aqui	fer Interval		
Total Interval Thickness (ft)	UTD	385	215	305	
Total Clay Thickness (ft)	UTD	300	185	163	
Total Sand Thickness (ft)	UTD	85	30	142	
Percent Clay	UTD	78%	86%	53%	
Percent Sand	UTD	22%	14%	47%	
		Potential High P	roducing Interval		
Number of Producing Interva	UTD	1	N/A	1	
Producing Interval Thickness	UTD	265	N/A	213	
Net Clay Thickness (ft)	UTD	180	N/A	71	
Net Sand Thickness (ft)	UTD	85	N/A	142	
Percent Clay	UTD	68%	N/A	33%	
Percent Sand	UTD	32%	N/A	67%	
		Clay Interbed	Characteristics		
Number of Clay Intereds	UTD	8	N/A	4	
Minimum Thickness (ft)	UTD	3	N/A	8	
Maximum Thickness (ft)	UTD	70	N/A	42	
Average Thickness (ft)	UTD	23	N/A	18	

Appendix					
Clay Layers Summary					
Geophysical Log: Mo-19					
	Chicot Aquifor	Evangeline	Burkeville	Upper Jasper	
	Chicot Aquiter	Aquifer	Confining Layer	Aquifer	
		Total Aquit	fer Interval		
Total Interval Thickness (ft)	146	614	270	329	
Total Clay Thickness (ft)	43	360	188	175	
Total Sand Thickness (ft)	103	254	82	154	
Percent Clay	29%	59%	70%	53%	
Percent Sand	71%	41%	30%	47%	
		Potential High P	roducing Interval		
Number of Producing	1	1	NI / A	1	
Intervals	T	1	N/A	T	
Producing Interval Thickness	146	514	N/A	201	
Net Clay Thickness (ft)	43	260	N/A	47	
Net Sand Thickness (ft)	103	254	N/A	154	
Percent Clay	29%	51%	N/A	23%	
Percent Sand	71%	49%	N/A	77%	
Clay Interbed Characteristics					
Number of Clay Intereds	2	8	N/A	7	
Minimum Thickness (ft)	19	3	N/A	5	
Maximum Thickness (ft)	24	68	N/A	50	
Average Thickness (ft)	23	35	N/A	25	

Appendix					
Clay Layers Summary					
	Geophys	ical Log: Mo-20			
	Chicot Aquifer	Evangeline	Burkeville	Upper Jasper	
	childer Aquirer	Aquifer	Confining Layer	Aquifer	
		Total Aqui	fer Interval		
Total Interval Thickness (ft)	UTD	UTD	UTD	405	
Total Clay Thickness (ft)	UTD	UTD	UTD	90	
Total Sand Thickness (ft)	UTD	UTD	UTD	315	
Percent Clay	UTD	UTD	UTD	22%	
Percent Sand	UTD	UTD	UTD	78%	
		Potential High P	roducing Interval		
Number of Producing Interva	UTD	UTD	UTD	1	
Producing Interval Thickness	UTD	UTD	UTD	400	
Net Clay Thickness (ft)	UTD	UTD	UTD	87	
Net Sand Thickness (ft)	UTD	UTD	UTD	313	
Percent Clay	UTD	UTD	UTD	22%	
Percent Sand	UTD	UTD	UTD	78%	
		Clay Interbed	Characteristics		
Number of Clay Intereds	UTD	UTD	UTD	2	
Minimum Thickness (ft)	UTD	UTD	UTD	34	
Maximum Thickness (ft)	UTD	UTD	UTD	53	
Average Thickness (ft)	UTD	UTD	UTD	44	

Appendix					
Clay Layers Summary					
	Geophys	ical Log: Mo-21			
	Chicot Aquifer	Evangeline	Burkeville	Upper Jasper	
	childer Aquirer	Aquifer	Confining Layer	Aquifer	
		Total Aqui	fer Interval		
Total Interval Thickness (ft)	UTD	UTD	240	425	
Total Clay Thickness (ft)	UTD	UTD	222	217	
Total Sand Thickness (ft)	UTD	UTD	18	208	
Percent Clay	UTD	UTD	93%	51%	
Percent Sand	UTD	UTD	7%	49%	
		Potential High P	roducing Interval		
Number of Producing Interva	UTD	UTD	N/A	1	
Producing Interval Thickness	UTD	UTD	N/A	420	
Net Clay Thickness (ft)	UTD	UTD	N/A	212	
Net Sand Thickness (ft)	UTD	UTD	N/A	208	
Percent Clay	UTD	UTD	N/A	50%	
Percent Sand	UTD	UTD	N/A	50%	
		Clay Interbed	Characteristics		
Number of Clay Intereds	UTD	UTD	N/A	7	
Minimum Thickness (ft)	UTD	UTD	N/A	5	
Maximum Thickness (ft)	UTD	UTD	N/A	71	
Average Thickness (ft)	UTD	UTD	N/A	31	

Appendix					
Clay Layers Summary					
Geophysical Log: Mo-22					
	Chicot Aquifer	Evangeline	Burkeville	Upper Jasper	
	Chicot Aquiter	Aquifer	Confining Layer	Aquifer	
		Total Aqui	fer Interval		
Total Interval Thickness (ft)	UTD	258	272	440	
Total Clay Thickness (ft)	UTD	169	230	284	
Total Sand Thickness (ft)	UTD	89	42	156	
Percent Clay	UTD	66%	85%	65%	
Percent Sand	UTD	34%	15%	35%	
		Potential High Pi	roducing Interval		
Number of Producing		4	1	1	
Intervals	UID	1	T	T	
Producing Interval Thickness	UTD	258	192	440	
Net Clay Thickness (ft)	UTD	169	150	284	
Net Sand Thickness (ft)	UTD	89	42	156	
Percent Clay	UTD	66%	78%	65%	
Percent Sand	UTD	34%	22%	35%	
		Clay Interbed	Characteristics		
Number of Clay Intereds	UTD	5	4	6	
Minimum Thickness (ft)	UTD	9	10	20	
Maximum Thickness (ft)	UTD	100	82	54	
Average Thickness (ft)	UTD	56	38	36	
Appendix					
-------------------------------	----------------	-------------------------	-------------------	--------------	
Clay Layers Summary					
Geophysical Log: Mo-23					
	Chicot Aquifer	Evangeline	Burkeville	Upper Jasper	
	emeoryquirer	Aquifer	Confining Layer	Aquifer	
		Total Aqui [.]	fer Interval		
Total Interval Thickness (ft)	UTD	UTD	110	478	
Total Clay Thickness (ft)	UTD	UTD	110	202	
Total Sand Thickness (ft)	UTD	UTD	0	276	
Percent Clay	UTD	UTD	100%	42%	
Percent Sand	UTD	UTD	0%	58%	
		Potential High P	roducing Interval		
Number of Producing Interva	UTD	1	N/A	1	
Producing Interval Thickness	UTD	204	N/A	458	
Net Clay Thickness (ft)	UTD	59	N/A	182	
Net Sand Thickness (ft)	UTD	145	N/A	276	
Percent Clay	UTD	29%	N/A	40%	
Percent Sand	UTD	71%	N/A	60%	
		Clay Interbed	Characteristics		
Number of Clay Intereds	UTD	3	N/A	6	
Minimum Thickness (ft)	UTD	9	N/A	6	
Maximum Thickness (ft)	UTD	38	N/A	63	
Average Thickness (ft)	UTD	20	N/A	30	

Appendix					
Clay Layers Summary					
Geophysical Log: Mo-25					
	Chicot Aquifor	Evangeline	Burkeville	Upper Jasper	
	Chicot Aquiter	Aquifer	Confining Layer	Aquifer	
	Total Aquifer Interval				
Total Interval Thickness (ft)	230	713	240	542	
Total Clay Thickness (ft)	29	443	200	319	
Total Sand Thickness (ft)	201	270	40	223	
Percent Clay	13%	62%	83%	59%	
Percent Sand	87%	38%	17%	41%	
		Potential High Pi	roducing Interval		
Number of Producing	1	1	1	1	
Intervals	T	1	T	T	
Producing Interval Thickness	230	713	112	542	
Net Clay Thickness (ft)	29	443	83	319	
Net Sand Thickness (ft)	201	270	29	223	
Percent Clay	13%	62%	74%	59%	
Percent Sand	87%	38%	26%	41%	
		Clay Interbed	Characteristics		
Number of Clay Intereds	4	16	5	14	
Minimum Thickness (ft)	5	3	10	1	
Maximum Thickness (ft)	9	40	80	70	
Average Thickness (ft)	7	20	25	28	

Appendix				
Clay Layers Summary				
Geophysical Log: Mo-29				
	Chicot Aquifer	Evangeline	Burkeville	Upper Jasper
	childer Aquirer	Aquifer	Confining Layer	Aquifer
		Total Aqui	fer Interval	
Total Interval Thickness (ft)	UTD	UTD	275	310
Total Clay Thickness (ft)	UTD	UTD	246	121
Total Sand Thickness (ft)	UTD	UTD	29	189
Percent Clay	UTD	UTD	89%	39%
Percent Sand	UTD	UTD	11%	61%
		Potential High P	roducing Interval	
Number of Producing Interva	UTD	UTD	N/A	1
Producing Interval Thickness	UTD	UTD	N/A	260
Net Clay Thickness (ft)	UTD	UTD	N/A	71
Net Sand Thickness (ft)	UTD	UTD	N/A	189
Percent Clay	UTD	UTD	N/A	27%
Percent Sand	UTD	UTD	N/A	73%
		Clay Interbed	Characteristics	
Number of Clay Intereds	UTD	UTD	N/A	4
Minimum Thickness (ft)	UTD	UTD	N/A	15
Maximum Thickness (ft)	UTD	UTD	N/A	21
Average Thickness (ft)	UTD	UTD	N/A	18

Appendix				
Clay Layers Summary				
Geophysical Log: Mo-30				
	Chicot Aquifer	Evangeline	Burkeville	Upper Jasper
	childer Aquirer	Aquifer	Confining Layer	Aquifer
		Total Aqui	fer Interval	
Total Interval Thickness (ft)	UTD	UTD	250	320
Total Clay Thickness (ft)	UTD	UTD	250	153
Total Sand Thickness (ft)	UTD	UTD	0	167
Percent Clay	UTD	UTD	100%	48%
Percent Sand	UTD	UTD	0%	52%
		Potential High P	roducing Interval	
Number of Producing Interva	UTD	UTD	N/A	1
Producing Interval Thickness	UTD	UTD	N/A	300
Net Clay Thickness (ft)	UTD	UTD	N/A	133
Net Sand Thickness (ft)	UTD	UTD	N/A	167
Percent Clay	UTD	UTD	N/A	44%
Percent Sand	UTD	UTD	N/A	56%
		Clay Interbed	Characteristics	
Number of Clay Intereds	UTD	UTD	N/A	4
Minimum Thickness (ft)	UTD	UTD	N/A	7
Maximum Thickness (ft)	UTD	UTD	N/A	68
Average Thickness (ft)	UTD	UTD	N/A	33

Appendix				
Clay Layers Summary Geophysical Log: Mo-32				
	Chiest Amifan	Evangeline	Burkeville	Upper Jasper
	Chicot Aquiter	Aquifer	Confining Layer	Aquifer
		Total Aqui	fer Interval	
Total Interval Thickness (ft)	UTD	700	270	390
Total Clay Thickness (ft)	UTD	366	250	276
Total Sand Thickness (ft)	UTD	334	20	114
Percent Clay	UTD	52%	93%	71%
Percent Sand	UTD	48%	7%	29%
		Potential High P	roducing Interval	
Number of Producing Interva	UTD	1	N/A	1
Producing Interval Thickness	UTD	608	N/A	373
Net Clay Thickness (ft)	UTD	302	N/A	259
Net Sand Thickness (ft)	UTD	306	N/A	114
Percent Clay	UTD	50%	N/A	69%
Percent Sand	UTD	50%	N/A	31%
		Clay Interbed	Characteristics	
Number of Clay Intereds	UTD	10	N/A	5
Minimum Thickness (ft)	UTD	8	N/A	7
Maximum Thickness (ft)	UTD	90	N/A	120
Average Thickness (ft)	UTD	30	N/A	52

Appendix Claudeure Summer				
Geophysical Log: Mo-33				
	Chicot Aquifer	Evangeline	Burkeville	Upper Jasper
	emeoryquirer	Aquifer	Confining Layer	Aquifer
		Total Aquit	fer Interval	
Total Interval Thickness (ft)	UTD	UTD	280	400
Total Clay Thickness (ft)	UTD	UTD	210	276
Total Sand Thickness (ft)	UTD	UTD	70	124
Percent Clay	UTD	UTD	75%	69%
Percent Sand	UTD	UTD	25%	31%
		Potential High P	roducing Interval	
Number of Producing Interva	UTD	1	1	1
Producing Interval Thickness	UTD	380	115	340
Net Clay Thickness (ft)	UTD	163	45	216
Net Sand Thickness (ft)	UTD	217	70	124
Percent Clay	UTD	43%	39%	64%
Percent Sand	UTD	57%	61%	36%
		Clay Interbed	Characteristics	
Number of Clay Intereds	UTD	5	2	2
Minimum Thickness (ft)	UTD	14	10	60
Maximum Thickness (ft)	UTD	52	35	216
Average Thickness (ft)	UTD	33	23	138

Appendix				
Clay Layers Summary				
Geophysical Log: Mo-35				
	Chicot Aquifer	Evangeline	Burkeville	Upper Jasper
	childer Aquirer	Aquifer	Confining Layer	Aquifer
		Total Aqui	fer Interval	
Total Interval Thickness (ft)	UTD	UTD	250	510
Total Clay Thickness (ft)	UTD	UTD	235	207
Total Sand Thickness (ft)	UTD	UTD	15	303
Percent Clay	UTD	UTD	94%	41%
Percent Sand	UTD	UTD	6%	59%
		Potential High P	roducing Interval	
Number of Producing Interva	UTD	UTD	N/A	1
Producing Interval Thickness	UTD	UTD	N/A	482
Net Clay Thickness (ft)	UTD	UTD	N/A	179
Net Sand Thickness (ft)	UTD	UTD	N/A	303
Percent Clay	UTD	UTD	N/A	37%
Percent Sand	UTD	UTD	N/A	63%
		Clay Interbed	Characteristics	
Number of Clay Intereds	UTD	UTD	N/A	8
Minimum Thickness (ft)	UTD	UTD	N/A	5
Maximum Thickness (ft)	UTD	UTD	N/A	46
Average Thickness (ft)	UTD	UTD	N/A	23

Appendix				
Clay Layers Summary				
Geophysical Log: Mo-36				
	Chicot Aquifer	Evangeline	Burkeville	Upper Jasper
	emeoryquirer	Aquifer	Confining Layer	Aquifer
		Total Aqui [.]	fer Interval	
Total Interval Thickness (ft)	UTD	UTD	350	450
Total Clay Thickness (ft)	UTD	UTD	321	331
Total Sand Thickness (ft)	UTD	UTD	29	119
Percent Clay	UTD	UTD	92%	74%
Percent Sand	UTD	UTD	8%	26%
		Potential High P	roducing Interval	
Number of Producing Interva	UTD	1	N/A	1
Producing Interval Thickness	UTD	290	N/A	350
Net Clay Thickness (ft)	UTD	118	N/A	231
Net Sand Thickness (ft)	UTD	172	N/A	119
Percent Clay	UTD	41%	N/A	66%
Percent Sand	UTD	59%	N/A	34%
		Clay Interbed	Characteristics	
Number of Clay Intereds	UTD	3	N/A	6
Minimum Thickness (ft)	UTD	20	N/A	10
Maximum Thickness (ft)	UTD	60	N/A	68
Average Thickness (ft)	UTD	39	N/A	39

Appendix				
Clay Layers Summary				
Geophysical Log: Mo-37				
	Chicot Aquifor	Evangeline	Burkeville	Upper Jasper
	Chicot Aquiter	Aquifer	Confining Layer	Aquifer
	Total Aquifer Interval			
Total Interval Thickness (ft)	UTD	457	358	562
Total Clay Thickness (ft)	UTD	16	179	220
Total Sand Thickness (ft)	UTD	441	179	342
Percent Clay	UTD	4%	50%	39%
Percent Sand	UTD	96%	50%	61%
		Potential High Pi	roducing Interval	
Number of Producing		2	1	r
Intervals	UID	2	T	2
Producing Interval Thickness	UTD	377	70	150
Net Clay Thickness (ft)	UTD	14	0	4
Net Sand Thickness (ft)	UTD	363	70	146
Percent Clay	UTD	4%	0%	3%
Percent Sand	UTD	96%	100%	97%
		Clay Interbed	Characteristics	
Number of Clay Intereds	UTD	3	4	6
Minimum Thickness (ft)	UTD	2	17	2
Maximum Thickness (ft)	UTD	12	99	87
Average Thickness (ft)	UTD	5	45	37

Appendix				
Clay Layers Summary				
Geophysical Log: Mo-38				
	Chicot Aquifer	Evangeline	Burkeville	Upper Jasper
	emeoryquirer	Aquifer	Confining Layer	Aquifer
		Total Aqui	fer Interval	
Total Interval Thickness (ft)	UTD	470	335	425
Total Clay Thickness (ft)	UTD	317	313	193
Total Sand Thickness (ft)	UTD	153	22	232
Percent Clay	UTD	67%	93%	45%
Percent Sand	UTD	33%	7%	55%
		Potential High P	roducing Interval	
Number of Producing Interva	UTD	1	N/A	1
Producing Interval Thickness	UTD	215	N/A	410
Net Clay Thickness (ft)	UTD	99	N/A	178
Net Sand Thickness (ft)	UTD	116	N/A	232
Percent Clay	UTD	46%	N/A	43%
Percent Sand	UTD	54%	N/A	57%
		Clay Interbed	Characteristics	
Number of Clay Intereds	UTD	4	N/A	7
Minimum Thickness (ft)	UTD	8	N/A	11
Maximum Thickness (ft)	UTD	45	N/A	45
Average Thickness (ft)	UTD	25	N/A	25

Appendix				
Clay Layers Summary				
Geophysical Log: Mo-39				
	Chicot Aquifer	Evangeline	Burkeville	Upper Jasper
	childer Aquirer	Aquifer	Confining Layer	Aquifer
		Total Aqui	fer Interval	
Total Interval Thickness (ft)	UTD	520	260	450
Total Clay Thickness (ft)	UTD	295	248	246
Total Sand Thickness (ft)	UTD	225	12	204
Percent Clay	UTD	57%	95%	55%
Percent Sand	UTD	43%	5%	45%
		Potential High P	roducing Interval	
Number of Producing Interva	UTD	1	N/A	1
Producing Interval Thickness	UTD	278	N/A	300
Net Clay Thickness (ft)	UTD	72	N/A	125
Net Sand Thickness (ft)	UTD	206	N/A	175
Percent Clay	UTD	26%	N/A	42%
Percent Sand	UTD	74%	N/A	58%
		Clay Interbed	Characteristics	
Number of Clay Intereds	UTD	6	N/A	6
Minimum Thickness (ft)	UTD	5	N/A	5
Maximum Thickness (ft)	UTD	24	N/A	60
Average Thickness (ft)	UTD	12	N/A	20

Appendix					
Clay Layers Summary					
Geophysical Log: Mo-40					
	Chicot Aquifer	Evangeline	Burkeville	Upper Jasper	
	Chicot Aquiter	Aquifer	Confining Layer	Aquifer	
	Total Aquifer Interval				
Total Interval Thickness (ft)	UTD	610	460	530	
Total Clay Thickness (ft)	UTD	195	248	132	
Total Sand Thickness (ft)	UTD	415	212	398	
Percent Clay	UTD	32%	54%	25%	
Percent Sand	UTD	68%	46%	75%	
		Potential High Pi	roducing Interval		
Number of Producing		2	1	n	
Intervals	UID	Z	T	2	
Producing Interval Thickness	UTD	350	320	280	
Net Clay Thickness (ft)	UTD	70	220	88	
Net Sand Thickness (ft)	UTD	280	100	192	
Percent Clay	UTD	20%	69%	31%	
Percent Sand	UTD	80%	31%	69%	
		Clay Interbed	Characteristics		
Number of Clay Intereds	UTD	7	7	5	
Minimum Thickness (ft)	UTD	5	8	2	
Maximum Thickness (ft)	UTD	50	80	48	
Average Thickness (ft)	UTD	28	35	22	

Appendix					
Clay Layers Summary					
Geophysical Log: Mo-42					
	Chicot Aquifor	Evangeline	Burkeville	Upper Jasper	
	Chicot Aquiter	Aquifer	Confining Layer	Aquifer	
	Total Aquifer Interval				
Total Interval Thickness (ft)	UTD	828	470	495	
Total Clay Thickness (ft)	UTD	204	289	68	
Total Sand Thickness (ft)	UTD	624	181	427	
Percent Clay	UTD	25%	61%	14%	
Percent Sand	UTD	75%	39%	86%	
		Potential High Pi	roducing Interval		
Number of Producing		1	1	1	
Intervals	UID	T	T	T	
Producing Interval Thickness	UTD	828	50	495	
Net Clay Thickness (ft)	UTD	204	0	68	
Net Sand Thickness (ft)	UTD	624	50	427	
Percent Clay	UTD	25%	0%	14%	
Percent Sand	UTD	75%	100%	86%	
Clay Interbed Characteristics					
Number of Clay Intereds	UTD	9	6	3	
Minimum Thickness (ft)	UTD	12	4	13	
Maximum Thickness (ft)	UTD	35	95	42	
Average Thickness (ft)	UTD	23	48	23	

Appendix					
Clay Layers Summary					
	Geophysical Log: Mo-43				
	Chicot Aquifer	Evangeline	Burkeville	Upper Jasper	
	emeoryquirer	Aquifer	Confining Layer	Aquifer	
		Total Aqui [.]	fer Interval		
Total Interval Thickness (ft)	UTD	650	290	510	
Total Clay Thickness (ft)	UTD	317	179	338	
Total Sand Thickness (ft)	UTD	333	111	172	
Percent Clay	UTD	49%	62%	66%	
Percent Sand	UTD	51%	38%	34%	
		Potential High P	roducing Interval		
Number of Producing Interva	UTD	1	1	1	
Producing Interval Thickness	UTD	580	182	480	
Net Clay Thickness (ft)	UTD	247	74	308	
Net Sand Thickness (ft)	UTD	333	108	172	
Percent Clay	UTD	43%	41%	64%	
Percent Sand	UTD	57%	59%	36%	
		Clay Interbed	Characteristics		
Number of Clay Intereds	UTD	5	3	8	
Minimum Thickness (ft)	UTD	35	14	10	
Maximum Thickness (ft)	UTD	71	40	80	
Average Thickness (ft)	UTD	49	25	39	

Appendix				
Clay Layers Summary				
Geophysical Log: Mo-44				
	Chicot Aquifor	Evangeline	Burkeville	Upper Jasper
	Childe Aquiter	Aquifer	Confining Layer	Aquifer
		Total Aqui	fer Interval	
Total Interval Thickness (ft)	290	830	410	430
Total Clay Thickness (ft)	18	133	191	176
Total Sand Thickness (ft)	272	697	219	254
Percent Clay	6%	16%	47%	41%
Percent Sand	94%	84%	53%	59%
		Potential High P	roducing Interval	
Number of Producing	1	1	NI / A	1
Intervals	T	T	N/A	T
Producing Interval Thickness	290	830	N/A	300
Net Clay Thickness (ft)	18	133	N/A	66
Net Sand Thickness (ft)	272	697	N/A	234
Percent Clay	6%	16%	N/A	22%
Percent Sand	94%	84%	N/A	78%
		Clay Interbed	Characteristics	
Number of Clay Intereds	3	6	5	2
Minimum Thickness (ft)	1	2	2	4
Maximum Thickness (ft)	9	39	50	110
Average Thickness (ft)	6	11	32	44

Appendix				
Clay Layers Summary				
Geophysical Log: Mo-45				
	Chicot Aquifer	Evangeline	Burkeville	Upper Jasper
	childer Aquiler	Aquifer	Confining Layer	Aquifer
		Total Aqui	fer Interval	
Total Interval Thickness (ft)	UTD	650	340	420
Total Clay Thickness (ft)	UTD	420	192	225
Total Sand Thickness (ft)	UTD	230	148	195
Percent Clay	UTD	65%	56%	54%
Percent Sand	UTD	35%	44%	46%
		Potential High P	roducing Interval	
Number of Producing Interval	UTD	1	1	1
Producing Interval Thickness	UTD	275	248	420
Net Clay Thickness (ft)	UTD	135	100	225
Net Sand Thickness (ft)	UTD	140	148	195
Percent Clay	UTD	49%	40%	54%
Percent Sand	UTD	51%	60%	46%
		Clay Interbed	Characteristics	
Number of Clay Intereds	UTD	4	4	6
Minimum Thickness (ft)	UTD	20	18	12
Maximum Thickness (ft)	UTD	145	35	90
Average Thickness (ft)	UTD	71	25	38

Appendix				
Clay Layers Summary				
Geophysical Log: Mo-46				
	Chicot Aquifer	Evangeline	Burkeville	Upper Jasper
	emeor/iquiter	Aquifer	Confining Layer	Aquifer
		Total Aqui [.]	fer Interval	
Total Interval Thickness (ft)	UTD	690	300	455
Total Clay Thickness (ft)	UTD	418	233	374
Total Sand Thickness (ft)	UTD	272	67	81
Percent Clay	UTD	61%	78%	82%
Percent Sand	UTD	39%	22%	18%
		Potential High P	roducing Interval	
Number of Producing Interva	UTD	1	N/A	1
Producing Interval Thickness	UTD	390	N/A	392
Net Clay Thickness (ft)	UTD	191	N/A	311
Net Sand Thickness (ft)	UTD	199	N/A	81
Percent Clay	UTD	49%	N/A	79%
Percent Sand	UTD	51%	N/A	21%
		Clay Interbed	Characteristics	
Number of Clay Intereds	UTD	6	N/A	5
Minimum Thickness (ft)	UTD	10	N/A	8
Maximum Thickness (ft)	UTD	67	N/A	190
Average Thickness (ft)	UTD	32	N/A	62

Appendix				
Clay Layers Summary				
Geophysical Log: Mo-47				
	Chicot Aquifer	Evangeline	Burkeville	Upper Jasper
	emeoryquirer	Aquifer	Confining Layer	Aquifer
		Total Aqui [.]	fer Interval	
Total Interval Thickness (ft)	UTD	1040	470	480
Total Clay Thickness (ft)	UTD	650	56	162
Total Sand Thickness (ft)	UTD	390	414	318
Percent Clay	UTD	63%	12%	34%
Percent Sand	UTD	38%	88%	66%
		Potential High P	roducing Interval	
Number of Producing Interva	UTD	1	N/A	1
Producing Interval Thickness	UTD	400	N/A	480
Net Clay Thickness (ft)	UTD	180	N/A	162
Net Sand Thickness (ft)	UTD	220	N/A	318
Percent Clay	UTD	45%	N/A	34%
Percent Sand	UTD	55%	N/A	66%
		Clay Interbed	Characteristics	
Number of Clay Intereds	UTD	8	N/A	8
Minimum Thickness (ft)	UTD	5	N/A	5
Maximum Thickness (ft)	UTD	110	N/A	55
Average Thickness (ft)	UTD	23	N/A	20

Appendix					
Clay Layers Summary					
	Geophysical Log: Mo-48				
	Chicot Aquifer	Evangeline	Burkeville	Upper Jasper	
	emeoryquirer	Aquifer	Confining Layer	Aquifer	
		Total Aqui [.]	fer Interval		
Total Interval Thickness (ft)	UTD	560	270	460	
Total Clay Thickness (ft)	UTD	325	197	331	
Total Sand Thickness (ft)	UTD	235	73	129	
Percent Clay	UTD	58%	73%	72%	
Percent Sand	UTD	42%	27%	28%	
		Potential High P	roducing Interval		
Number of Producing Interva	UTD	1	N/A	1	
Producing Interval Thickness	UTD	500	N/A	362	
Net Clay Thickness (ft)	UTD	265	N/A	233	
Net Sand Thickness (ft)	UTD	235	N/A	129	
Percent Clay	UTD	53%	N/A	64%	
Percent Sand	UTD	47%	N/A	36%	
		Clay Interbed	Characteristics		
Number of Clay Intereds	UTD	8	N/A	7	
Minimum Thickness (ft)	UTD	20	N/A	10	
Maximum Thickness (ft)	UTD	62	N/A	45	
Average Thickness (ft)	UTD	33	N/A	33	

Appendix					
Clay Layers Summary					
Geophysical Log: Mo-49					
	Chicot Aquifer	Evangeline	Burkeville	Upper Jasper	
	Chicot Aquiter	Aquifer	Confining Layer	Aquifer	
	Total Aquifer Interval				
Total Interval Thickness (ft)	230	575	293	480	
Total Clay Thickness (ft)	70	447	259	349	
Total Sand Thickness (ft)	160	128	34	131	
Percent Clay	30%	78%	88%	73%	
Percent Sand	70%	22%	12%	27%	
		Potential High Pi	roducing Interval		
Number of Producing	1	1	1	1	
Intervals	T	L	T	T	
Producing Interval Thickness	230	575	98	480	
Net Clay Thickness (ft)	70	447	27	349	
Net Sand Thickness (ft)	160	128	71	131	
Percent Clay	30%	78%	28%	73%	
Percent Sand	70%	22%	72%	27%	
		Clay Interbed	Characteristics		
Number of Clay Intereds	2	12	8	11	
Minimum Thickness (ft)	8	5	6	3	
Maximum Thickness (ft)	52	80	31	30	
Average Thickness (ft)	35	25	19	17	

Appendix				
Clay Layers Summary				
Geophysical Log: Mo-50				
	Chicot Aquifer	Evangeline	Burkeville	Upper Jasper
	emeor/iquirer	Aquifer	Confining Layer	Aquifer
		Total Aqui [.]	fer Interval	
Total Interval Thickness (ft)	UTD	690	245	420
Total Clay Thickness (ft)	UTD	438	162	231
Total Sand Thickness (ft)	UTD	252	83	189
Percent Clay	UTD	63%	66%	55%
Percent Sand	UTD	37%	34%	45%
		Potential High P	roducing Interval	
Number of Producing Interva	UTD	1	N/A	1
Producing Interval Thickness	UTD	367	N/A	320
Net Clay Thickness (ft)	UTD	135	N/A	131
Net Sand Thickness (ft)	UTD	232	N/A	189
Percent Clay	UTD	37%	N/A	41%
Percent Sand	UTD	63%	N/A	59%
		Clay Interbed	Characteristics	
Number of Clay Intereds	UTD	8	N/A	5
Minimum Thickness (ft)	UTD	8	N/A	10
Maximum Thickness (ft)	UTD	223	N/A	68
Average Thickness (ft)	UTD	55	N/A	26

Appendix				
Clay Layers Summary				
Geophysical Log: Mo-51				
	Chicot Aquifer	Evangeline	Burkeville	Upper Jasper
	childer Aquiler	Aquifer	Confining Layer	Aquifer
		Total Aqui	fer Interval	
Total Interval Thickness (ft)	UTD	UTD	233	475
Total Clay Thickness (ft)	UTD	UTD	185	128
Total Sand Thickness (ft)	UTD	UTD	48	347
Percent Clay	UTD	UTD	79%	27%
Percent Sand	UTD	UTD	21%	73%
		Potential High P	roducing Interval	
Number of Producing Interva	UTD	1	N/A	1
Producing Interval Thickness	UTD	312	N/A	475
Net Clay Thickness (ft)	UTD	143	N/A	128
Net Sand Thickness (ft)	UTD	169	N/A	347
Percent Clay	UTD	46%	N/A	27%
Percent Sand	UTD	54%	N/A	73%
		Clay Interbed	Characteristics	
Number of Clay Intereds	UTD	4	N/A	9
Minimum Thickness (ft)	UTD	10	N/A	3
Maximum Thickness (ft)	UTD	68	N/A	30
Average Thickness (ft)	UTD	36	N/A	14

Appendix					
Clay Layers Summary					
Geophysical Log: Mo-52					
	Chicot Aquifer	Evangeline	Burkeville	Upper Jasper	
	Chicot Aquiter	Aquifer	Confining Layer	Aquifer	
	Total Aquifer Interval				
Total Interval Thickness (ft)	UTD	545	215	560	
Total Clay Thickness (ft)	UTD	334	165	311	
Total Sand Thickness (ft)	UTD	211	50	249	
Percent Clay	UTD	61%	77%	56%	
Percent Sand	UTD	39%	23%	44%	
		Potential High Pi	roducing Interval		
Number of Producing		1	1	c	
Intervals	UID	1	T	D	
Producing Interval Thickness	UTD	545	230	456	
Net Clay Thickness (ft)	UTD	334	36	207	
Net Sand Thickness (ft)	UTD	211	194	249	
Percent Clay	UTD	61%	16%	45%	
Percent Sand	UTD	39%	84%	55%	
Clay Interbed Characteristics					
Number of Clay Intereds	UTD	5	3	7	
Minimum Thickness (ft)	UTD	13	30	10	
Maximum Thickness (ft)	UTD	142	85	175	
Average Thickness (ft)	UTD	67	55	50	

Appendix				
Clay Layers Summary				
Geophysical Log: Mo-53				
	Chicot Aquifer	Evangeline	Burkeville	Upper Jasper
	chieot Aquirei	Aquifer	Confining Layer	Aquifer
		Total Aqui [.]	fer Interval	
Total Interval Thickness (ft)	UTD	UTD	390	430
Total Clay Thickness (ft)	UTD	UTD	369	254
Total Sand Thickness (ft)	UTD	UTD	21	176
Percent Clay	UTD	UTD	95%	59%
Percent Sand	UTD	UTD	5%	41%
		Potential High P	roducing Interval	
Number of Producing Interva	I UTD	1	N/A	1
Producing Interval Thickness	UTD	150	N/A	307
Net Clay Thickness (ft)	UTD	38	N/A	141
Net Sand Thickness (ft)	UTD	112	N/A	166
Percent Clay	UTD	25%	N/A	46%
Percent Sand	UTD	75%	N/A	54%
		Clay Interbed	Characteristics	
Number of Clay Intereds	UTD	2	N/A	3
Minimum Thickness (ft)	UTD	18	N/A	45
Maximum Thickness (ft)	UTD	20	N/A	52
Average Thickness (ft)	UTD	19	N/A	48

Appendix					
Clay Layers Summary					
Geophysical Log: Mo-55					
	Chicot Aquifer	Evangeline	Burkeville	Upper Jasper	
	chicot Aquiter	Aquifer	Confining Layer	Aquifer	
	Total Aquifer Interval				
Total Interval Thickness (ft)	UTD	590	290	510	
Total Clay Thickness (ft)	UTD	330	210	389	
Total Sand Thickness (ft)	UTD	260	80	121	
Percent Clay	UTD	56%	72%	76%	
Percent Sand	UTD	44%	28%	24%	
		Potential High P	roducing Interval		
Number of Producing		1	1	n	
Intervals	UID	L	T	2	
Producing Interval Thickness	UTD	590	100	280	
Net Clay Thickness (ft)	UTD	330	28	88	
Net Sand Thickness (ft)	UTD	260	72	192	
Percent Clay	UTD	56%	28%	31%	
Percent Sand	UTD	44%	72%	69%	
	Clay Interbed Characteristics				
Number of Clay Intereds	UTD	7	3	8	
Minimum Thickness (ft)	UTD	10	30	9	
Maximum Thickness (ft)	UTD	90	70	160	
Average Thickness (ft)	UTD	47	42	39	

Appendix					
Clay Layers Summary					
Geophysical Log: Mo-56					
	Chicot Aquifer	Evangeline	Burkeville	Upper Jasper	
	Chicot Aquiler	Aquifer	Confining Layer	Aquifer	
		Total Aqui	fer Interval		
Total Interval Thickness (ft)	UTD	UTD	375	405	
Total Clay Thickness (ft)	UTD				
Total Sand Thickness (ft)	UTD				
Percent Clay	UTD				
Percent Sand	UTD				
		Potential High Pi	roducing Interval		
Number of Producing Interv	UTD	1		1	
Producing Interval Thicknes	UTD	70		252	
Net Clay Thickness (ft)	UTD	18		169	
Net Sand Thickness (ft)	UTD	52		83	
Percent Clay	UTD	26%		67%	
Percent Sand	UTD	74%		33%	
		Clay Interbed	Characteristics		
Number of Clay Intereds	UTD	1		2	
Minimum Thickness (ft)	UTD	18		46	
Maximum Thickness (ft)	UTD	18		123	
Average Thickness (ft)	UTD	18		85	

Appendix					
Clay Layers Summary					
Geophysical Log: Mo-57					
	Chicot Aquifer	Evangeline	Burkeville	Upper Jasper	
	Chicot Aquiter	Aquifer	Confining Layer	Aquifer	
	Total Aquifer Interval				
Total Interval Thickness (ft)	117	500	290	860	
Total Clay Thickness (ft)	71	284	210	545	
Total Sand Thickness (ft)	46	216	80	315	
Percent Clay	61%	57%	72%	63%	
Percent Sand	39%	43%	28%	37%	
	Potential High Producing Interval				
Number of Producing	1	1	1	1	
Intervals	T	L	T	T	
Producing Interval Thickness	117	500	200	860	
Net Clay Thickness (ft)	71	284	54	545	
Net Sand Thickness (ft)	46	216	146	315	
Percent Clay	61%	57%	27%	63%	
Percent Sand	39%	43%	73%	37%	
		Clay Interbed	Characteristics		
Number of Clay Intereds	5	10	4	11	
Minimum Thickness (ft)	19	3	20	3	
Maximum Thickness (ft)	30	50	50	110	
Average Thickness (ft)	24	24	30	36	

Appendix				
Clay Layers Summary				
	Geophys	ical Log: Mo-60		
	Chicot Aquifer	Evangeline	Burkeville	Upper Jasper
	emeoryquirer	Aquifer	Confining Layer	Aquifer
		Total Aqui [.]	fer Interval	
Total Interval Thickness (ft)	UTD	UTD	250	370
Total Clay Thickness (ft)	UTD	UTD	240	153
Total Sand Thickness (ft)	UTD	UTD	10	217
Percent Clay	UTD	UTD	96%	41%
Percent Sand	UTD	UTD	4%	59%
		Potential High P	roducing Interval	
Number of Producing Interva	UTD	1	N/A	1
Producing Interval Thickness	UTD	198	N/A	330
Net Clay Thickness (ft)	UTD	64	N/A	108
Net Sand Thickness (ft)	UTD	134	N/A	212
Percent Clay	UTD	32%	N/A	33%
Percent Sand	UTD	68%	N/A	64%
		Clay Interbed	Characteristics	
Number of Clay Intereds	UTD	3	N/A	8
Minimum Thickness (ft)	UTD	8	N/A	2
Maximum Thickness (ft)	UTD	48	N/A	30
Average Thickness (ft)	UTD	21	N/A	14

Appendix				
Clay Layers Summary Geophysical Log: Mo-61				
	Chiest Aquifar	Evangeline	Burkeville	Upper Jasper
	Chicot Aquiter	Aquifer	Confining Layer	Aquifer
		Total Aqui	fer Interval	
Total Interval Thickness (ft)	UTD	UTD	270	510
Total Clay Thickness (ft)	UTD	UTD	270	326
Total Sand Thickness (ft)	UTD	UTD	0	184
Percent Clay	UTD	UTD	100%	64%
Percent Sand	UTD	UTD	0%	36%
		Potential High P	roducing Interval	
Number of Producing Interva	UTD	1	N/A	1
Producing Interval Thickness	UTD	448	N/A	440
Net Clay Thickness (ft)	UTD	265	N/A	256
Net Sand Thickness (ft)	UTD	183	N/A	184
Percent Clay	UTD	59%	N/A	58%
Percent Sand	UTD	41%	N/A	42%
		Clay Interbed	Characteristics	
Number of Clay Intereds	UTD	3	N/A	3
Minimum Thickness (ft)	UTD	30	N/A	25
Maximum Thickness (ft)	UTD	200	N/A	175
Average Thickness (ft)	UTD	88	N/A	85

Appendix				
Clay Layers Summary				
Geophysical Log: Mo-62				
	Chicot Aquifor	Evangeline	Burkeville	Upper Jasper
	Chicot Aquiter	Aquifer	Confining Layer	Aquifer
		Total Aqui	fer Interval	
Total Interval Thickness (ft)	256	753	245	510
Total Clay Thickness (ft)	173	390	205	310
Total Sand Thickness (ft)	83	363	40	200
Percent Clay	68%	52%	84%	61%
Percent Sand	32%	48%	16%	39%
		Potential High Pi	roducing Interval	
Number of Producing	2	1	NI / A	1
Intervals	Z	L	N/A	T
Producing Interval Thickness	156	753	N/A	510
Net Clay Thickness (ft)	55	390	N/A	310
Net Sand Thickness (ft)	101	363	N/A	200
Percent Clay	35%	52%	N/A	61%
Percent Sand	65%	48%	N/A	39%
		Clay Interbed	Characteristics	
Number of Clay Intereds	5	18	6	10
Minimum Thickness (ft)	10	2	10	7
Maximum Thickness (ft)	32	35	65	50
Average Thickness (ft)	22	20	21	24

Appendix					
Clay Layers Summary					
Geophysical Log: Mo-63					
	Chicot Aquifer	Evangeline	Burkeville	Upper Jasper	
	chicot Aquiter	Aquifer	Confining Layer	Aquifer	
	Total Aquifer Interval				
Total Interval Thickness (ft)	UTD	50	240	360	
Total Clay Thickness (ft)	UTD	8	187	192	
Total Sand Thickness (ft)	UTD	42	53	168	
Percent Clay	UTD	16%	78%	53%	
Percent Sand	UTD	84%	22%	47%	
		Potential High Pi	roducing Interval		
Number of Producing		1	1	r	
Intervals	UID	1	T	2	
Producing Interval Thickness	UTD	50	88	360	
Net Clay Thickness (ft)	UTD	8	23	192	
Net Sand Thickness (ft)	UTD	42	65	168	
Percent Clay	UTD	16%	26%	53%	
Percent Sand	UTD	84%	74%	47%	
		Clay Interbed	Characteristics		
Number of Clay Intereds	UTD	3	7	7	
Minimum Thickness (ft)	UTD	8	7	7	
Maximum Thickness (ft)	UTD	8	70	42	
Average Thickness (ft)	UTD	8	37	24	

Appendix					
Clay Layers Summary					
Geophysical Log: Mo-64					
	Chicot Aquifor	Evangeline	Burkeville	Upper Jasper	
	Chicot Aquiter	Aquifer	Confining Layer	Aquifer	
	Total Aquifer Interval				
Total Interval Thickness (ft)	90	585	235	320	
Total Clay Thickness (ft)	15	274	228	86	
Total Sand Thickness (ft)	75	311	7	234	
Percent Clay	17%	47%	97%	27%	
Percent Sand	83%	53%	3%	73%	
		Potential High Pi	roducing Interval		
Number of Producing	1	1	NI / A	1	
Intervals	T	L	N/A	T	
Producing Interval Thickness	90	585	N/A	320	
Net Clay Thickness (ft)	15	274	N/A	86	
Net Sand Thickness (ft)	75	311	N/A	234	
Percent Clay	17%	47%	N/A	27%	
Percent Sand	83%	53%	N/A	73%	
		Clay Interbed	Characteristics		
Number of Clay Intereds	2	11	3	10	
Minimum Thickness (ft)	15	1	34	2	
Maximum Thickness (ft)	15	100	60	41	
Average Thickness (ft)	15	25	45	17	

Appendix				
Clay Layers Summary				
Geophysical Log: Mo-65				
	Chicot Aquifor	Evangeline	Burkeville	Upper Jasper
	Chicot Aquiter	Aquifer	Confining Layer	Aquifer
	Total Aquifer Interval			
Total Interval Thickness (ft)	210	840	480	520
Total Clay Thickness (ft)	20	490	420	291
Total Sand Thickness (ft)	190	350	60	229
Percent Clay	10%	58%	88%	56%
Percent Sand	90%	42%	13%	44%
		Potential High Pi	roducing Interval	
Number of Producing	1	1	NI / A	n
Intervals	T	L	IN/A	2
Producing Interval Thickness	210	840	N/A	378
Net Clay Thickness (ft)	20	490	N/A	149
Net Sand Thickness (ft)	190	350	N/A	200
Percent Clay	10%	58%	N/A	39%
Percent Sand	90%	42%	N/A	53%
		Clay Interbed	Characteristics	
Number of Clay Intereds	1	9	6	9
Minimum Thickness (ft)	20	30	20	2
Maximum Thickness (ft)	20	80	90	130
Average Thickness (ft)	20	49	47	32

Appendix					
Clay Layers Summary					
Geophysical Log: Mo-66					
	Chicot Aquifer	Evangeline	Burkeville	Upper Jasper	
	Chicot Aquiter	Aquifer	Confining Layer	Aquifer	
	Total Aquifer Interval				
Total Interval Thickness (ft)	UTD	270	240	487	
Total Clay Thickness (ft)	UTD	91	210	246	
Total Sand Thickness (ft)	UTD	179	30	241	
Percent Clay	UTD	34%	88%	51%	
Percent Sand	UTD	66%	13%	49%	
	Potential High Producing Interval				
Number of Producing		1	NI / A	1	
Intervals	UID	1	N/A	T	
Producing Interval Thickness	UTD	270	N/A	487	
Net Clay Thickness (ft)	UTD	91	N/A	246	
Net Sand Thickness (ft)	UTD	179	N/A	241	
Percent Clay	UTD	34%	N/A	51%	
Percent Sand	UTD	66%	N/A	49%	
		Clay Interbed	Characteristics		
Number of Clay Intereds	UTD	5	N/A	13	
Minimum Thickness (ft)	UTD	2	N/A	2	
Maximum Thickness (ft)	UTD	40	N/A	30	
Average Thickness (ft)	UTD	18	N/A	15	

Appendix					
Clay Layers Summary					
Geophysical Log: Mo-67					
	Chicot Aquifer	Evangeline	Burkeville	Upper Jasper	
	Chicot Aquiler	Aquifer	Confining Layer	Aquifer	
	Total Aquifer Interval				
Total Interval Thickness (ft)	UTD	250	250	480	
Total Clay Thickness (ft)	UTD	74	210	267	
Total Sand Thickness (ft)	UTD	176	40	213	
Percent Clay	UTD	30%	84%	56%	
Percent Sand	UTD	70%	16%	44%	
		Potential High Pi	roducing Interval		
Number of Producing		1	NI / A	1	
Intervals	UID	1	IN/A	T	
Producing Interval Thickness	UTD	250	N/A	480	
Net Clay Thickness (ft)	UTD	74	N/A	267	
Net Sand Thickness (ft)	UTD	176	N/A	213	
Percent Clay	UTD	30%	N/A	56%	
Percent Sand	UTD	70%	N/A	44%	
		Clay Interbed	Characteristics		
Number of Clay Intereds	UTD	4	N/A	12	
Minimum Thickness (ft)	UTD	1	N/A	1	
Maximum Thickness (ft)	UTD	40	N/A	40	
Average Thickness (ft)	UTD	25	N/A	18	

Appendix				
Clay Layers Summary				
Geophysical Log: Mo-68				
Chicot Aquifor	Evangeline	Burkeville	Upper Jasper	
Chicot Aquiter	Aquifer	Confining Layer	Aquifer	
Total Aquifer Interval				
180	620	290	400	
10	338	260	241	
170	282	30	159	
6%	55%	90%	60%	
94%	45%	10%	40%	
	Potential High Pi	roducing Interval		
1	1	1	1	
T	1	T	T	
180	620	26	400	
10	338	26	241	
170	282	0	159	
6%	55%	N/A	60%	
94%	45%	N/A	40%	
	Clay Interbed	Characteristics		
3	16	7	8	
4	1	7	6	
6	60	40	70	
5	17	22	27	
	A Clay Lay Geophys Chicot Aquifer 180 10 170 6% 94% 1 1 180 10 170 6% 94% 2 3 4 6% 94%	Appendix Clay Layers Summary Geophysical Log: Mo-68 Chicot Aquifer Aquifer Aquifer Total Aquif 180 620 10 338 170 282 6% 55% 94% 45% 1 1 180 620 10 338 170 282 6% 55% 94% 45% 1 1 180 620 1 1 138 620 1 1 180 620 10 338 110 338 120 282 6% 55% 94% 45% 10 338 10 338 120 16 13 16 14 1 15 17	Appendix Clay Lay: Summary Clay Lay: Summary Geophy: Ides Summary Burkeville Burkeville Chicot Aquifer Burkeville Aquifer Burkeville Confining Layer Total Aquifer Confining Layer 180 620 290 10 338 260 170 282 30 6% 55% 90% 94% 45% 10% 1 1 1 180 620 26 94% 620 26 1 1 1 180 620 26 10 338 26 11 1 1 180 620 26 10 338 26 10 338 26 10 338 26 10 55% N/A 94% 45% N/A	
Appendix				
-------------------------------	----------------	-------------------	-------------------	--------------
Clay Layers Summary				
Geophysical Log: Mo-69				
	Chicot Aquifer	Evangeline	Burkeville	Upper Jasper
	Chicot Aquiter	Aquifer	Confining Layer	Aquifer
		Total Aqui	fer Interval	
Total Interval Thickness (ft)	UTD	285	245	520
Total Clay Thickness (ft)	UTD	57	245	221
Total Sand Thickness (ft)	UTD	228	0	299
Percent Clay	UTD	20%	100%	43%
Percent Sand	UTD	80%	0%	58%
		Potential High Pi	roducing Interval	
Number of Producing		1	NI / A	1
Intervals	UID	1	N/A	T
Producing Interval Thickness	UTD	285	N/A	520
Net Clay Thickness (ft)	UTD	57	N/A	221
Net Sand Thickness (ft)	UTD	228	N/A	299
Percent Clay	UTD	20%	N/A	43%
Percent Sand	UTD	80%	N/A	58%
Clay Interbed Characteristics				
Number of Clay Intereds	UTD	5	N/A	12
Minimum Thickness (ft)	UTD	8	N/A	5
Maximum Thickness (ft)	UTD	20	N/A	50
Average Thickness (ft)	UTD	14	N/A	22

Appendix				
Clay Layers Summary				
	Geophys	ical Log: Mo-70		
	Chicot Aquifer	Evangeline	Burkeville	Upper Jasper
	chicot Aquiter	Aquifer	Confining Layer	Aquifer
		Total Aqui	fer Interval	
Total Interval Thickness (ft)	UTD	450	270	459
Total Clay Thickness (ft)	UTD	210	230	207
Total Sand Thickness (ft)	UTD	240	40	252
Percent Clay	UTD	47%	85%	45%
Percent Sand	UTD	53%	15%	55%
		Potential High Pi	roducing Interval	
Number of Producing		1	1	1
Intervals	UID	L	T	T
Producing Interval Thickness	UTD	450	270	459
Net Clay Thickness (ft)	UTD	210	230	207
Net Sand Thickness (ft)	UTD	240	40	252
Percent Clay	UTD	47%	85%	45%
Percent Sand	UTD	53%	15%	55%
Clay Interbed Characteristics				
Number of Clay Intereds	UTD	6	4	8
Minimum Thickness (ft)	UTD	4	20	5
Maximum Thickness (ft)	UTD	110	70	50
Average Thickness (ft)	UTD	35	46	23

Appendix				
Clay Layers Summary				
	Geophys	ical Log: Mo-72		
	Chicot Aquifer	Evangeline	Burkeville	Upper Jasper
	emeor/iquiter	Aquifer	Confining Layer	Aquifer
		Total Aqui [.]	fer Interval	
Total Interval Thickness (ft)	UTD	477	315	460
Total Clay Thickness (ft)	UTD	277	236	155
Total Sand Thickness (ft)	UTD	200	79	305
Percent Clay	UTD	58%	75%	34%
Percent Sand	UTD	42%	25%	66%
		Potential High P	roducing Interval	
Number of Producing Interva	UTD	1	N/A	1
Producing Interval Thickness	UTD	115	N/A	350
Net Clay Thickness (ft)	UTD	16	N/A	90
Net Sand Thickness (ft)	UTD	99	N/A	260
Percent Clay	UTD	14%	N/A	26%
Percent Sand	UTD	86%	N/A	74%
		Clay Interbed	Characteristics	
Number of Clay Intereds	UTD	4	N/A	5
Minimum Thickness (ft)	UTD	2	N/A	3
Maximum Thickness (ft)	UTD	8	N/A	40
Average Thickness (ft)	UTD	4	N/A	18

Appendix				
Clay Layers Summary				
Geophysical Log: Mo-73				
	Chicot Aquifer	Evangeline	Burkeville	Upper Jasper
	Chicot Aquiter	Aquifer	Confining Layer	Aquifer
		Total Aqui	fer Interval	
Total Interval Thickness (ft)	175	580	227	218
Total Clay Thickness (ft)	0	436	113	100
Total Sand Thickness (ft)	175	144	114	118
Percent Clay	0%	75%	50%	46%
Percent Sand	100%	25%	50%	54%
		Potential High Pi	roducing Interval	
Number of Producing	1	1	1	r
Intervals	T	L	T	2
Producing Interval Thickness	175	230	139	62
Net Clay Thickness (ft)	0	86	25	18
Net Sand Thickness (ft)	175	144	114	44
Percent Clay	0%	37%	18%	29%
Percent Sand	100%	63%	82%	71%
Clay Interbed Characteristics				
Number of Clay Intereds	0	8	4	11
Minimum Thickness (ft)	0	8	1	2
Maximum Thickness (ft)	0	96	50	65
Average Thickness (ft)	0	36	28	16

Appendix				
Clay Layers Summary				
Geophysical Log: Mo-74				
	Chicot Aquifer	Evangeline	Burkeville	Upper Jasper
	emeor/iquiter	Aquifer	Confining Layer	Aquifer
		Total Aqui [.]	fer Interval	
Total Interval Thickness (ft)	UTD	UTD	270	510
Total Clay Thickness (ft)	UTD	UTD	241	218
Total Sand Thickness (ft)	UTD	UTD	29	292
Percent Clay	UTD	UTD	89%	43%
Percent Sand	UTD	UTD	11%	57%
		Potential High P	roducing Interval	
Number of Producing Interva	UTD	1	N/A	1
Producing Interval Thickness	UTD	356	N/A	505
Net Clay Thickness (ft)	UTD	121	N/A	213
Net Sand Thickness (ft)	UTD	235	N/A	292
Percent Clay	UTD	34%	N/A	42%
Percent Sand	UTD	66%	N/A	58%
		Clay Interbed	Characteristics	
Number of Clay Intereds	UTD	5	N/A	7
Minimum Thickness (ft)	UTD	7	N/A	8
Maximum Thickness (ft)	UTD	58	N/A	73
Average Thickness (ft)	UTD	26	N/A	22

Appendix				
Clay Layers Summary				
Geophysical Log: Mo-75				
	Chicot Aquifer	Evangeline	Burkeville	Upper Jasper
	Chicot Aquiler	Aquifer	Confining Layer	Aquifer
		Total Aqui	fer Interval	
Total Interval Thickness (ft)	UTD	590	200	370
Total Clay Thickness (ft)	UTD			
Total Sand Thickness (ft)	UTD			
Percent Clay	UTD			
Percent Sand	UTD			
		Potential High Pi	roducing Interval	
Number of Producing Interv	UTD	1		1
Producing Interval Thicknes	UTD	390		340
Net Clay Thickness (ft)	UTD	106		75
Net Sand Thickness (ft)	UTD	284		265
Percent Clay	UTD	27%		22%
Percent Sand	UTD	73%		78%
Clay Interbed Characteristics				
Number of Clay Intereds	UTD	5		3
Minimum Thickness (ft)	UTD	13		10
Maximum Thickness (ft)	UTD	32		40
Average Thickness (ft)	UTD	21		25

Appendix				
Clay Layers Summary				
Geophysical Log: Mo-76				
	Chicot Aquifer	Evangeline	Burkeville	Upper Jasper
	Chicot Aquiter	Aquifer	Confining Layer	Aquifer
		Total Aqui	fer Interval	
Total Interval Thickness (ft)	290	600	325	515
Total Clay Thickness (ft)	35	292	258	325
Total Sand Thickness (ft)	255	308	67	190
Percent Clay	12%	49%	79%	63%
Percent Sand	88%	51%	21%	37%
		Potential High Pi	roducing Interval	
Number of Producing	1	1	n	1
Intervals	T	T	2	T
Producing Interval Thickness	290	600	152	515
Net Clay Thickness (ft)	35	292	85	325
Net Sand Thickness (ft)	255	308	67	190
Percent Clay	12%	49%	56%	63%
Percent Sand	88%	51%	44%	37%
Clay Interbed Characteristics				
Number of Clay Intereds	1	7	8	11
Minimum Thickness (ft)	35	6	6	1
Maximum Thickness (ft)	35	83	50	30
Average Thickness (ft)	35	37	18	14

Appendix				
Clay Layers Summary				
Geophysical Log: Mo-77				
	Chicot Aquifer	Evangeline	Burkeville	Upper Jasper
	chicot Aquiter	Aquifer	Confining Layer	Aquifer
		Total Aqui	fer Interval	
Total Interval Thickness (ft)	UTD	635	175	380
Total Clay Thickness (ft)	UTD			
Total Sand Thickness (ft)	UTD			
Percent Clay	UTD			
Percent Sand	UTD			
		Potential High Pi	roducing Interval	
Number of Producing	UTD	1		1
Producing Interval Thickness	UTD	310		228
Net Clay Thickness (ft)	UTD	177		130
Net Sand Thickness (ft)	UTD	133		100
Percent Clay	UTD	57%		57%
Percent Sand	UTD	43%		44%
		Clay Interbed	Characteristics	
Number of Clay Intereds	UTD	6		4
Minimum Thickness (ft)	UTD	8		15
Maximum Thickness (ft)	UTD	67		70
Average Thickness (ft)	UTD	30		33

Appendix				
Clay Layers Summary				
Evangeline Burkeville Unner Jasper				
	Chicot Aquifer	Aquifer	Confining Laver	Aquifer
		Total Aquif	fer Interval	
Total Interval Thickness (ft)	142	730	240	570
Total Clay Thickness (ft)	42	171	126	318
Total Sand Thickness (ft)	100	559	114	252
Percent Clay	30%	23%	53%	56%
Percent Sand	70%	77%	47%	44%
		Potential High Pi	roducing Interval	
Number of Producing	1	1	N/A	1
Producing Interval Thickness	96	190	N/A	500
Net Clay Thickness (ft)	0	71	N/A	170
Net Sand Thickness (ft)	96	119	N/A	330
Percent Clay	0%	37%	N/A	34%
Percent Sand	100%	63%	N/A	66%
		Clay Interbed	Characteristics	
Number of Clay Intereds	1	10	N/A	10
Minimum Thickness (ft)	42	1	N/A	1
Maximum Thickness (ft)	42	63	N/A	35
Average Thickness (ft)	42	17	N/A	12

APPENDIX 4 – PERCENT CLAY MAPS

APPENDIX 5 – PROPOSED TEST DRILLING LOCATIONS

- Site Info:
 - o Property ID: 373396
 - Owner: Lone Star Groundwater
- At District office
- Educational tool
- Central part of the District
- Near existing GPS site (TXCN)

Lone Star Groundwater Conservation District Phase 2 Subsidence Investigations

- Site Info:
 - o Property ID: 283366
 - o Owner: City of Magnolia
- Southwest corner of the District
- Near areas of projected growth or increase in GW demand
- Relatively sparse geophysical data

- Site Info:
 - o Property ID: 124049
 - o Owner: City of Montgomery
- Relatively sparse geophysical data
- Northwest area monitoring
- Possible growth area
- Shallowest Jasper of the six possible locations

- Site Info:
 - o Property ID: 49361
 - Owner: Porter Special Utility District
- Identified water level declines in special project
- Near growth areas
- Relatively close to the Lake Houston Site
- Deepest Jasper of the six possible locations

- Site Info:
 - o Property ID: 152063
 - o Owner: Southern Oaks Water System, Inc.
- Possible area of future growth
- Sporadic historical water level data, but generally slower declines than central and southern MoCo
- Near log Mo-4; New site won't add much more info regarding structure

- Site Info:
 - o Property ID: 210035
 - o Owner: San Jac River Authority
 - o Same property as PA13
- Area of high interest
- Along growth corridor
- Near SJRA well field

